EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos."

Transcripción

1 EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs. por impreso. El estudiante lleva dos bolsas: una para los impresos A, en la que caben 120 y otra para los impresos B, en la que caben 100. Ha calculado que cada día es capaz de repartir 150 impresos como máximo. Lo que se pregunta el estudiante es: Cuántos impresos habrá que repartir de cada clase para que su beneficio diario sea máximo? Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. La función objetivo es: f(x, y)=5x+7y Las restricciones: La zona de soluciones factibles es:

2 Vértices: A(0, 100) B intersección de s,t: C intersección de r,t: D (120, 0) Siendo los valores de la función objetivo:

3 EJERCICIO 1 PROBLEMA DE AUTOEVALUACION: El director de servicio de agua de una ciudad encuentra una forma de proporcionar al menos 10 millones de litros de agua potable al dia (10mld). El suministro puede ser proporcionado por el deposito local o por medio de unas tuberías desde una ciudad vecina (por bombeo). El deposito local tiene un rendimiento diario de 5 millones de litros de agua diarios (5mld), que no puede ser sobrepasado. La tubería no puede abastecer mas de 10 millones de litros diarios (10mld), debido a su diámetro. Por otra parte. Por acuerdo contractual, se bombearía como mínimo 6 millones de litros diarios (6mld). Finalmente el agua del deposito cuesta $ 300 por millón de litros de agua (ml) y $ 500 por tubería (por bombeo). cómo podrá el director minimizar los costos de suministro diario de agua?. SOLUCION: I).- Formular el Problema (Fase I). a).- Determinar el objetivo del Problema : minimizar los costos. b).- Definir las variables del Problema: Z = Costos X 1 = Cantidad de litros de agua abastecidos por el deposito local: C 1 = $300 / millón de litros X 2 = Cantidad de litros de agua abastecidos por tubería (bombeo): C 2 = $ 500/ Millon de litros. c).- Establecer restricciones del problema: 1).- Requerimiento mínimo de abastecimiento de 10 millones de litros de agua diarios. 2).- Capacidad máxima del deposito local de 5 millones de litros de agua diarios. 3).- Capacidad máxima de tubería de 10 millones de litro de agua diarios. 4).- Requerimiento mínimo por contrato de la tubería de 6 millones de litros de agua diarios. II).- Construir el modelo del problema (Fase II). a).- Función Objetivo : Min Z = 300X X 2. b).- Sujeta a las Restricciones: 1. X 1 + X 2 10 mld (Para satisfacer el requerimiento mínimo de litros de agua de la ciudad). 2. X 1 5 mld ( Capacidad del deposito). 3. X 2 10 mld ( Capacidad de la tubería) 4. X 2 6 mld (Requerimiento de suministro de la tubería). c).- No negatividad: X 1 0 ; X 2 0. III).- Convertir el sistema de restricciones a un sistema de ecuaciones (en forma directa). SISTEMA DE RESTRICCIONES SISTEMA DE ECUACIONES 1. X 1 + X X 1 + X 2 = 10

4 2. X X 1 = 5 3. X X 2 = X X 2 = 6 5. X 1 0 ; X 2 0 IV).- Encontrar los puntos vértices P( X 1, X 2 ), de cada ecuación. 1. X 1 + X 2 = 10 Si X 1 = 0 por lo tanto X 2 = 10 : P 1 (0, 10). Si X 2 = 0 por lo tanto X 1 = 10 : P 2 (10, 0). 2. X 1 = 5 por lo tanto X 2 = 0 : P 3 (5, 0) 3. X 2 = 10 por lo tanto X 1 = 0 : P 4 (0, 10) 4. X 2 = 6 por lo tanto X 1 = 0 : P 5 (0, 6). V) Eligiendo una escala, trazar cada una de las restricciones (1/2 CMS =1 unidad) X2>=0 X1<=5 X2>= P4 P5 P1 P8 P10 P9 P7 P3 P2 0 P X2>=6 X1 + X2>=10 X1>=0 Coordenadas (gráficamente) P1 (0,10) P7 (5,5) P2 (10,0) P8 (4,6) P3 (5,0) P9 (5,6) P4 (0,10) P10 (5,10) P5 (6,10) P6 (0,0) VI) Limitar de acuerdo al tipo de restricción.

5 X2>=0 ( ) X1<=5 ( ) X2>=0 ( ) P4 P5 P1 P8 P10 P9 P7 P3 P2 0 P X2>=6 ( ) X1 + X2>=10 ( ) X1>=0 ( ) VII) Encontrar el área de solución, definida por el conjunto convexo. Como podemos observar en las graficas, el área 1, es en la que es en la que converge todas las flechas (conjunto convexo). P1 (0,10) P10 (5,10) AREA DE SOLUCION P8 (4,6) P9 (5,6) VIII) Sustituir los puntos vértices del área de solución en la función objetivo. De acuerdo a la grafica, los puntos vértices del área de solución son: P 1 (0, 10) ; P 8 (4, 6) ; P 9 (5, 6) y P 10 (5, 10) P(X 1, X 2 ) ; Min Z = 300 X X 2

6 P 1 (0, 10) ; Z 1 = 300(0)+500(10) = Z 1 =$5000 P 8 (4, 6) ; Z 8 = 300(4)+500(6) = Z 8 =$4200 P 9 (5, 6) ; Z 9 = 300(5)+500(6) = Z 9 =$4500 P 10 (5, 10) ; Z 10 = 300(5)+500(10) = Z 1 =$6500 Optimo mínimo Como podemos observar el punto P 8 (4, 6), arroja el valor mínimo de Z = $4200 Solución optima: X 1 = 4 mld ; X 2 = 6 mld y Z Min= $4200 IX)Probar factibilidad: Si X 1 =4 y X 2 =6 1.- X 1 +X X X 1 0 y X (Cumple) 4 0 y 6 0 (Cumple) (Cumple) 2.- X X (Cumple) 6 6 (Cumple) X)Conclusión: El director deberá suministrar 4 millones de litros de agua diarios a través del deposito local y 6 millones de litros de agua diarios a través de las tuberías (Por bombeo); para satisfacer el requerimiento mínimo de 10 millones de litros de agua diarios a un costo mínimo de $4200.

7 EJERCICIO 2 Resolver mediante el método gráfico el siguiente problema: Maximizar Z = f(x,y) = 3x + 2y sujeto a: 2x + y 18 2x + 3y 42 3x + y 24 x 0, y 0 1. Inicialmente dibujamos el sistema de coordenadas asociando a un eje la variable x, y al otro la y, como se puede ver en la figura. 2. Marcamos en ellos una escala numérica apropiada de acuerdo con los recorridos de las variables en relación con las restricciones del problema. A continuación dibujamos las restricciones. Comenzando con la primera, dibujamos la recta que se obtiene al considerar la restricción como igualdad. Aparece representada como el segmento que une A con B y la región que delimita ésta restricción viene indicada por el color AMARILLO. Se repite el proceso de la misma forma con la segunda y tercera restricción, y delimitan la región de color AZUL y ROJO respectivamente. La región factible es la intersección de las regiones delimitadas por la terna de restricciones y por las condiciones de no negatividad de las variables, es decir, por la región de valores admisibles limitada por ambos ejes coordenados. La región factible está representada por el polígono convexo O-F-H-G-C, que aparece de color VIOLETA.

8 3. Ya que la región factible es no vacía (problema factible), procedemos a determinar sus puntos extremos, candidatos a soluciones óptimas, que son los puntos O-F-H-G-C de la figura. Finalmente, evaluamos la función objetivo (3x + 2y) en esos puntos, resultado que se recoge en la tabla siguiente. Como el punto G proporciona el mayor valor al objetivo Z, tal punto constituye la solución óptima, que indicaremos x = 3 y = 12, con valor óptimo Z = 33. Punto extremo Coordenadas (x,y) Valor bjetivo (Z) O (0,0) 0 C (0,14) 28 G (3,12) 33 H (6,6) 30 F (8,0) 24

9 COMPARACION DEL MÉTODO GRÁFICO CON EL MÉTODO SIMPLEX Las sucesivas tablas que hemos construido durante el método simplex van proporcionando el valor de la función objetivo en los distintos vértices, ajustándose, a la vez, los coeficientes de las variables iniciales y de holgura. En la primera iteración (Tabla I) han permanecido todos los coeficientes iguales, se ha calculado el valor de la función objetivo en el vértice (0,0) que es el valor que contienen las variables básicas, siendo el resultado 0. Tabla I. Iteración nº Base Cb P0 P1 P2 P3 P4 P5 P P P Z

10 A continuación se desplaza por la arista (0,0) F, calculando el valor de la función Z, hasta llegar a F. éste paso se traduce como la segunda iteración en el Método Simplex, aportando la Tabla II, en la que se ha calculado el valor que corresponde al vértice F(8,0): Z = f(8,0) = 24. Tabla II. Iteración nº Base Cb P0 P1 P2 P3 P4 P5 P / /3 P / /3 P / /3 Z

11 Sigue por la arista FH, hasta llegar a H, donde se para y despliega los datos de la Tabla III. En ésta tercera iteración se ha calculado el valor que corresponde al vértice H(6,6): Z = f(6,6) = 30. Tabla III. Iteración nº Base Cb P0 P1 P2 P3 P4 P5 P P P Z

12 Se Continúa haciendo cálculos a través de la arista HG, hasta llegar al vértice G. Los datos que se reflejan son los de la Tabla IV, concluyendo con la misma y advirtiendo que ha terminado (comprobando antes que la solución no mejora al desplazarse por la arista GC). Tabla IV. Iteración nº Base Cb P0 P1 P2 P3 P4 P5 P /2 0 0 P /4 0 1 P /4 0 0 Z /4 0 0

13 El valor máximo de la función objetivo es 33, y corresponde a x = 3 e y = 12 (vértice G). Además, se puede comprobar que el valor de la función en el vértice C (0,14), no supera el valor 33.

14 EJERCICIO 2 Una compañía de auditores se especializa en preparar liquidaciones y auditorías de empresas pequeñas. Tienen interés en saber cuantas auditorías y liquidaciones pueden realizar mensualmente para maximizar sus ingresos. Se dispone de 800 horas de trabajo directo y 320 horas para revisión. Una auditoría en promedio requiere de 40 horas de trabajo directo y 10 horas de revisión, además aporta un ingreso de 300 dls. Una liquidación de impuesto requiere de 8 horas de trabajo directo y de 5 horas de revisión, produce un ingreso de 100 dls. El máximo de liquidaciones mensuales disponibles es de 60. OBJETIVO : Maximizar el ingreso total. VARIABLE DE DECISION: Cantidad de auditorías (X 1 ). Cantidad de liquidaciones (X 2). RESTRICCIONES : Tiempo disponible de trabajo directo Tiempo disponible de revisión Número máximo de liquidaciones. Maximizar Sujeto a:

15 La solución óptima siempre se encuentra en uno de los vértices del conjunto de soluciones factibles. Se analizan estos valores en la función objetivo. El vértice que representa el mejor valor de la función objetivo será la solución óptima.

16 EJERCICIO 3 Un herrero con 80 kgs. de acero y 120 kgs. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente a y Bolívares cada una para sacar el máximo beneficio. Para la de paseo empleará 1 kg. De acero y 3 kgs de aluminio, y para la de montaña 2 kgs. de ambos metales. Cuántas bicicletas de paseo y de montaña venderá? Sean las variables de decisión: x= n: de bicicletas de paseo vendidas. y= n: de bicicletas de montaña vendidas. Tabla de material empleado: Acero Aluminio Paseo 1 3 Montaña 2 2 Función objetivo: f(x, y)= x y máxima. Restricciones:

17 soluciones factibles: Zona de Vértices del recinto (soluciones básicas): A(0, 40) B intersección de r y s: C(40,0) Valores de la función objetivo en los vértices: Ha de vender 20 bicicletas de paseo y 30 de montaña para obtener un beneficio máximo de Bolívares.

18 EJERCICIO 3 Una compañía posee dos minas: la mina A produce cada día 1 tonelada de hierro de alta calidad, 3 toneladas de calidad media y 5 de baja calidad. La mina B produce cada día 2 toneladas de cada una de las tres calidades. La compañía necesita al menos 80 toneladas de mineral de alta calidad, 160 toneladas de calidad media y 200 de baja calidad. Sabiendo que el coste diario de la operación es de 2000 euros en cada mina cuántos días debe trabajar cada mina para que el coste sea mínimo?. Solución Organizamos los datos en una tabla: días Alta Calidad Baja calidad Coste diario calidad media Mina A x 1x 3x 5x 2000x Mina B y 2y 2y 2y 2000y La función objetivo C(x, y)=2000x y Las restricciones son: La región factible la obtenemos dibujando las rectas auxiliares: r 1 x + 2y=80, r 2 3x + 2y= 160 y r 3 5x + 2y=200 en el primer cuadrante y considerando la región no acotada que determina el sistema de restricciones:

19 Los vértices son los puntos A(0, 100), B(20, 50), C(40, 20), D(80, 0), que se encuentran al resolver el sistema que determinan dos a dos las rectas auxiliares y (y que estén dentro de la región factible). r 1 r 2 que nos da el punto (40, 20) (comprobarlo) r 2 r 3 que nos da el punto (20, 50) r 1 r 3 no hace falta calcularlo pues queda fuera de la región factible. En la gráfica se aprecia que el primer punto que se alcanza al desplazar la recta C(x, y)=0 es el (40, 20). Luego la solución es trabajar 40 días en la mina A y 20 en la B. (método gráfico) Lo comprobamos aplicando el método analítico: C(0, 100)= = C(20, 50)= = = C(40, 20)= = = coste mínimo C(80, 0)= =160000

20 EJERCICIO 4 En una pastelería se hacen dos tipos de tartas: Vienesa y Real. Cada tarta Vienesa necesita un cuarto de relleno por cada Kg. de bizcocho y produce un beneficio de 250 Pts, mientras que una tarta Real necesita medio Kg. de relleno por cada Kg. de bizcocho y produce 400 Ptas. de beneficio. En la pastelería se pueden hacer diariamente hasta 150 Kg. de bizcocho y 50 Kg. de relleno, aunque por problemas de maquinaria no pueden hacer mas de 125 tartas de cada tipo. Cuántas tartas Vienesas y cuantas Reales deben vender al día para que sea máximo el beneficio? Solución En primer lugar hacemos una tabla para organizar los datos: Tipo Nº Bizcocho Relleno Beneficio T. Vienesa x 1.x 0,250x 250x T. Real y 1.y 0,500y 400y Función objetivo (hay que obtener su máximo): f(x, y)=250x+ 400y Sujeta a las siguientes condiciones (restricciones del problema): Consideramos las rectas auxiliares a las restricciones y dibujamos la región factible: Para 0.25x+0.50y=50, ó x + 2y=200 x Y Para x + y =150 x Y La otras dos son paralelas a los ejes Al eje OY x=125 Al eje Ox y =125 Y las otras restricciones (x e y mayor o igual a cero) nos indican que las soluciones deben estar en el primer cuadrante La región factible la hemos coloreado de amarillo:

21 Encontremos los vértices: El O (0,0), el A (125, 0) y el D (0, 100) se encuentran directamente (son las intersecciones con los ejes coordenados) Se observa que la restricción y Resolviendo el sistema: es redundante (es decir sobra ), por reducción obtenemos y=50, x=100 Otro vértice es el punto C(100, 50) Y el último vértice que nos falta se obtiene resolviendo el sistema: X+y=150 X=125 Cuya solución es: X=125, Y=25 B(125, 25) Los vértices de la región son O(0,0), A(125,0), B(125,25) y C(100,50) y D(0,100), Si dibujamos el vector de dirección de la función objetivo f(x, y)=250x+ 400y Haciendo 250x+ 400y =0, y=-(250/400)x=-125x/200 x Y

22 Se ve gráficamente que la solución es el punto (100, 50), ya que es el vértice mas alejado (el último que nos encontramos al desplazar la rectas 250x+400y=0 ) Lo comprobamos con el método analítico, es decir usando el teorema que dice que si existe solución única debe hallarse en uno de los vértices La unción objetivo era: f(x, y)=250x+400y, sustituyendo en los vértices obtenemos f(125,0)= f(125,25)= = f(100,50)= = f(0,100)= El máximo beneficio es y se obtiene en el punto (100, 50) Conclusión: se tienen que vender 100 tartas vienesas y 50 tartas reales

23 EJERCICIO 4 Se va a organizar una planta de un taller de automóviles donde van a trabajar electricistas y mecánicos. Por necesidades de mercado, es necesario que haya mayor o igual número de mecánicos que de electricistas y que el número de mecánicos no supere al doble que el de electricistas. En total hay disponibles 30 electricistas y 20 mecánicos. El beneficio de la empresa por jornada es de 250 euros por electricista y 200 euros por mecánico. Cuántos trabajadores de cada clase deben elegirse para obtener el máximo beneficio y cual es este? Sea x = nº electricistas y = nº mecánicos La función objetivo f (x, y)=250x+ 200y, las restricciones La región factible sería para estas restricciones: Se aprecia gráficamente (línea en rojo) que la solución óptima está en el punto (20, 20). Por tanto:

24 20 electricistas y 20 mecánicos dan el máximo beneficio, y este es 9000 euros, ya que f(x, y) = =9000

25 EJERCICIO 6 Disponemos de euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos invertir un máximo de euros en las del tipo A y como mínimo en las del tipo B. Además queremos que la inversión en las del tipo A sea menor que el doble de la inversión en B. Cuál tiene que ser la distribución de la inversión para obtener el máximo interés anual? Solución Es un problema de programación lineal. Llamamos x a la cantidad que invertimos en acciones de tipo A Llamamos y a la cantidad que invertimos en acciones de tipo B inversión rendimiento Tipo A x 0,1x Tipo B y 0,08y ,1x+0,08y Condiciones que deben cumplirse (restricciones): R 1 R 2 R 3 R 4 Dibujamos las rectas auxiliares asociadas a las restricciones para conseguir la región factible (conjunto de puntos que cumplen esas condiciones) r 1 r 2 (paralela a OY ) r 3(paralela a OX) r 4 x y x y x y x y

26 La región factible es la pintada de amarillo, de vértices A, B, C, D y E A (0, 60000), B (120000, 60000), C (130000, 65000), D (130000, 80000) y E (0, ) La función objetivo es; F(x, y)= 0,1x+0,08y Si dibujamos la curva F(x, y) =0 (en rojo) y la desplazamos se puede comprobar gráficamente que el vértice mas alejado es el D, y por tanto es la solución óptima. Comprobarlo analíticamente (es decir comprobar que el valor máximo de la función objetivo, F, se alcanza en el vértice D)

27 EJERCICIO 6 Cierta persona dispone de 10 millones como máximo para repartir entre dos tipos de inversión (A y B). En la opción A desea invertir entre 2 y 7 millones. Además, quiere destinar a esa opción, como mínimo, tanta cantidad de dinero como a la B. a) Qué cantidades debe invertir en cada una de las dos opciones? Plantear el problema y representar gráficamente el conjunto de soluciones. b) Sabiendo que el rendimiento de la inversión será del 9 % en la opción A y del 12 % en la B, Qué cantidad debe invertir en cada una para optimizar el rendimiento global??a cuánto ascenderá a) Sean las variables de decisión: x= cantidad invertida en acciones tipo A y= cantidad invertida en acciones tipo B Las restricciones son: Puede invertir en cada una de las dos opciones las cantidades correspondientes a cada uno de los puntos de la zona sombreada de la siguiente gráfica:

28 b) La función de beneficios es: Y los vértices de la zona sombreada son: A intersección de r,t: B intersección de t,u: C intersección de s,u, o sea C(7, 3) D(7, 0) E(2, 0) Los valores de f en esos puntos son: Ha de invertir, pues 5 millones de bolívares en A y 5 millones en B para obtener un beneficio máximo de 1,05 millones, o sea bolívares

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

-Teoría y Problemas resueltos de Programación Lineal

-Teoría y Problemas resueltos de Programación Lineal -Teoría y Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables.

Más detalles

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución: Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones

Más detalles

Problemas resueltos de Programación Lineal

Problemas resueltos de Programación Lineal Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables. Conocer

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

PROGRAMACIÓN LINEAL. Página 102. Página 103

PROGRAMACIÓN LINEAL. Página 102. Página 103 4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior

Más detalles

PRÁ CTICÁS DE IO CON POM-QM

PRÁ CTICÁS DE IO CON POM-QM Contenido INVESTIGACIÓN DE OPERACIONES Modelos y aplicaciones de programación lineal(página 3) Modelos de Transporte y transbordo(página 40) Modelos de Asignación(página 60) Modelos de gestión de proyectos

Más detalles

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20. PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

PRÁ CTICÁS DE IO CON POM-QM

PRÁ CTICÁS DE IO CON POM-QM Contenido INVESTIGACIÓN DE OPERACIONES Modelos y aplicaciones de programación lineal(página 3) Modelos de Transporte y transbordo(página 41) Modelos de Asignación(página 57) Modelos de gestión de proyectos

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE TRABAJO DE VERANO 2014 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: ARITMÉTICA Y ÁLGEBRA CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE Números: reales, irracionales, racionales.

Más detalles

Problema de Programación Lineal

Problema de Programación Lineal Problema de Programación Lineal Introducción La optimización es un enfoque que busca la mejor solución a un problema. Propósito: Maximizar o minimizar una función objetivo que mide la calidad de la solución,

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0 Prueba de Acceso a la Universidad. JUNIO 0. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máima. OPCIÓN A. Considerar las matrices 0 A 0,

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

4 Programación lineal

4 Programación lineal 4 Programación lineal TIVIES INIILES 4.I. Resuelve las siguientes inecuaciones de primer grado. a) ( ) 4( ) b) > 6 a) 6 4 8 6 4 8 6 9, Solución:, b) > 6 6 6 > 6 6 6 6 > 6 6 6 > 6 8 > 0 > Solución:, 4.II.

Más detalles

Unidad 1 Modelos de programación lineal

Unidad 1 Modelos de programación lineal Unidad 1 Modelos de programación lineal La programación lineal comenzó a utilizarse prácticamente en 1950 para resolver problemas en los que había que optimizar el uso de recursos escasos. Fueron de los

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL

PROBLEMAS DE PROGRAMACIÓN LINEAL PROBLEMAS DE PROGRAMACIÓN LINEAL A.- Problemas generales B.- Problemas con porcentajes C.- Problemas de dietas D.- Problemas para profundizar A.- PROBLEMAS GENERALES Ejercicio 1.- En una fábrica se construyen

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

ÁLGEBRA LINEAL - Año 2012

ÁLGEBRA LINEAL - Año 2012 UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS ECONÓMICAS ÁLGEBRA LINEAL - Año 0 Notas de Cátedra correspondientes a la UNIDAD SIETE PROGRAMACIÓN LINEAL * INECUACIONES Se denomina inecuación a

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN GUÍA DE CONTENIDOS Y CASOS PRÁCTICOS Dra. Silvia Izzo Prof. Silvia Mamone 1 2 CONTENIDOS 1.- Desigualdades:

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

Tema 1. - SISTEMAS DE ECUACIONES.

Tema 1. - SISTEMAS DE ECUACIONES. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad - Tema. - SISTEMAS DE ECUACIONES. Ejercicio. ( ) a) ( puntos) Determine dos números sabiendo que al dividir el mayor por el menor obtenemos 7

Más detalles

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL Orientaciones para la PRUEBA DE ACCESO A LA UNIVERSIDAD en relación con este tema: Inecuaciones lineales con una o dos

Más detalles

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO EXAMEN COMPLETO INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones: A y B. El alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5 58 EJERCICIOS DE FUNCIONES FUNCIONES y GRÁFICAS. Construir una tabla de valores para cada una de las siguientes funciones: a) y=3+ b) f()= c) y= -4 d) f(). Completar la siguiente tabla (obsérvese el primer

Más detalles

6 PROGRAMACIÓN LINEAL

6 PROGRAMACIÓN LINEAL 6 PROGRAMACIÓN LINEAL Introducción El tema comienza con una introducción a la programación lineal, en la que se exponen todos los conceptos necesarios como región factible, función objetivo, vector director

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de agosto de 200. Estandarización Cuando se plantea un modelo de LP pueden existir igualdades y desigualdades. De la misma forma

Más detalles

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID)

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) 1.- (Junio 99). Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta

Más detalles

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales PROGRAMACIÓN LINEAL Índice: 1. Origen de la programación lineal------------------------------------------------------------- 1 2. Inecuaciones lineales. Interpretación geométrica -----------------------------------------

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13 Carlos Ivorra Índice 1 Introducción a la optimización 1 2 Programación entera 18 3 Introducción a la programación lineal 24 4 El método símplex

Más detalles

Tablas y gráficas. Objetivos. Antes de empezar. 1.Sistema de ejes coordenados pág. 178 Ejes cartesianos Coordenadas de un punto

Tablas y gráficas. Objetivos. Antes de empezar. 1.Sistema de ejes coordenados pág. 178 Ejes cartesianos Coordenadas de un punto 11 Tablas y gráficas Objetivos En esta quincena aprenderás a: Representar puntos en el plano Calcular las coordenadas de un punto Construir e interpretar gráficas cartesianas Construir e interpretar tablas

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD 4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD El problema de programación lineal se puede considerar como modelo de asignación de recursos, en el que el objetivo es maximizar los ingresos o las utilidades,

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

Máximo o mínimo de una función

Máximo o mínimo de una función Análisis: Máimos, mínimos, optimización 1 MAJ00 Máimo o mínimo de una función 1. Dados tres números reales cualesquiera r 1, r y r, hallar el número real que minimiza la función D( ) ( r ) ( r ) ( r 1

Más detalles

Funciones elementales

Funciones elementales 10 Funciones elementales Objetivos En esta quincena aprenderás a: Reconocer y distinguir algunas de las funciones más habituales. Utilizar algunas funciones no lineales: cuadráticas, de proporcionalidad

Más detalles

Guía de Ejercicios. Matemática 11

Guía de Ejercicios. Matemática 11 Guía de Ejercicios Matemática 11 Matemática 11 Resolver: 1) 5 + 3x 31 3x 5) 3(2x 1) > 4+5(x 1) 6) x + 4 3 > 2x 3 +1 4 1 7) 4 (2x 1) x

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE . (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 Problema 1. Dadas las matrices: 4 A = 1 0 1 1 B = 2 2 0 y 2 C = 1 0 2 Calcular la matriz X que verifica la ecuación AXB =2C Problema 2. Un banco

Más detalles

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el LA PARABOLA Señor... cuando nos equivoquemos, concédenos la voluntad de rectificar; y cuando tengamos razón... no permitas que nos hagamos insufribles para el prójimo. Marshall En la presente entrega,

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de

Más detalles

Capítulo 3: APLICACIONES DE LAS DERIVADAS

Capítulo 3: APLICACIONES DE LAS DERIVADAS Capítulo : Aplicaciones de la derivada 1 Capítulo : APLICACIONES DE LAS DERIVADAS Dentro de las aplicaciones de las derivadas quizás una de las más importantes es la de conseguir los valores máimos y mínimos

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Sobrantes 00 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 00 (Modelo ) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO Sea el recinto del plano definido

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

BLOQUE III Funciones y gráficas

BLOQUE III Funciones y gráficas BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal.

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal. ECUACION DE DEMANDA La ecuación de demanda es una ecuación que expresa la relación que existe entre q y p, donde q es la cantidad de artículos que los consumidores están dispuestos a comprar a un precio

Más detalles

OPTIMIZACIÓN ESCALAR. María Jesús de la Fuente Aparicio Dpto. Ingeniería de Sistemas y Automática

OPTIMIZACIÓN ESCALAR. María Jesús de la Fuente Aparicio Dpto. Ingeniería de Sistemas y Automática OPTIMIZACIÓN ESCALAR María Jesús de la Fuente Aparicio Dpto. Ingeniería de Sistemas y Automática CONCEPTOS BÁSICOS DEFINICIONES Definiciones Optimo local (mínimo local) Un punto * F se denomina un mínimo

Más detalles

INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER

INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER INSTITUTO SUPERIOR TECNOLÓGICO NORBERT WIENER ASIGNATURA: Investigación de Operaciones PROGRAMA: S3C Lima - Perú 2 1 Programación Lineal -IO Origen de la Programación Lineal En los siglos XVII y XVIII,

Más detalles

Problemas Resueltos de Desigualdades y Programación Lineal

Problemas Resueltos de Desigualdades y Programación Lineal Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Matemáticas. Problemas Resueltos de Desigualdades y Programación Lineal Para el curso de Cálculo Diferencial de Químico Biólogo

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

2. Vector tangente y gráficas en coordenadas polares.

2. Vector tangente y gráficas en coordenadas polares. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 Vector tangente y gráficas en coordenadas polares De la misma forma que la ecuación cartesiana y = yx ( ) define una curva en el plano, aquella formada por los

Más detalles

PPL PARA RESOLVER CON SOLVE

PPL PARA RESOLVER CON SOLVE PPL PARA RESOLVER CON SOLVE 1. Una compañía posee dos minas: la mina A produce cada día 1 tonelada de hierro de alta calidad, 3 toneladas de calidad media y 5 de baja calidad. La mina B produce cada día

Más detalles

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta. ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y IES Fco Ayala de Granada Sobrantes 010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 6) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 (.5 puntos) Un supermercado

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Autor: José Arturo Barreto M.A. Páginas web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: [email protected] Capítulo I El Problema 1.1 Planteamiento del problema

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

Aplicaciones de vectores

Aplicaciones de vectores Aplicaciones de vectores Coordenadas del punto medio de un segmento Las coordenadas del punto medio de un segmento son la semisuma de las coordenadas de los extremos. Ejemplo: Hallar las coordenadas del

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

FUNCIÓN CUADRÁTICA. Tres formas para identificar una parábola según los datos:

FUNCIÓN CUADRÁTICA. Tres formas para identificar una parábola según los datos: FUNCIÓN CUADRÁTICA Una función cuadrática es una función polinómica de segundo grado de la forma y=ax +bx+c, cuya gráfica es una parábola de eje vertical, donde a representa la abertura de la parábola.

Más detalles

TEMA 8: FUNCIONES. Para establecer correctamente la relación que supone una función se pueden utilizar varios métodos:

TEMA 8: FUNCIONES. Para establecer correctamente la relación que supone una función se pueden utilizar varios métodos: TEMA 8: FUNCIONES Una función es una relación entre dos magnitudes, x e y, que asigna a cada valor de x, un único valor de y. Estas magnitudes reciben el nombre de variables, siendo x la variable independiente,

Más detalles

Movimientos en el plano

Movimientos en el plano 7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros

Más detalles

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD MATEMÁTICAS III. PROBLEMAS Y CUESTIONES TEMA 4: RESTRICCIONES DE IGUALDAD OPTIMIZACIÓN CON Problema 1: Una empresa calcula que puede alcanzar unos beneficios anuales (en miles de euros) dados por la función:

Más detalles

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts SOLUCIONES 27. (Puntuación máxima: 3 Puntos) Una empresa fabrica dos tipos de colonia: A y B. La 1ª contiene un 15% de extracto de jazmín, un 20% de alcohol y el resto es agua, y la 2ª lleva un 30% de

Más detalles

CUADERNO Nº 10 NOMBRE: FECHA: / / Funciones lineales

CUADERNO Nº 10 NOMBRE: FECHA: / / Funciones lineales Funciones lineales Contenidos 1. Función de proporcionalidad directa Definición Representación gráfica 2. Función afín Definición Representación gráfica 3. Ecuación de la recta Forma punto-pendiente Recta

Más detalles

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad) Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Incidencias. Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2014 (Incidencias. Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 04 (Incidencias Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio opción A, modelo 3 Junio Incidencias 04 Sea f la función definida por f(x) = x + ln(x)

Más detalles

UNIDAD 5: PROGRAMACIÓN LINEAL

UNIDAD 5: PROGRAMACIÓN LINEAL UNIDAD 5: PROGRAMACIÓN LINEAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- INECUACIONES LINEALES CON DOS INCÓGNITAS... 2 3.- SISTEMAS DE INECUACIONES LINEALES... 3 4.- PROGRAMACIÓN LINEAL. FORMULACIÓN

Más detalles

Investigación Operacional I EII 445

Investigación Operacional I EII 445 Investigación Operacional I EII 445 Programación Lineal Método Simple Gabriel Gutiérrez Jarpa. Propiedades Básicas de Programación Lineal Formato Estándar Un problema de programación lineal es un programa

Más detalles

Tema 2: Programación Lineal

Tema 2: Programación Lineal Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 82 - INGENIERÍA INFORMÁTICA 20 de Octubre 2008 Ejercicio JN2 Se pide que formules el siguiente problema de programación

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD SEPTIEMBRE 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

1 Aplicaciones de Máximos y Mínimos

1 Aplicaciones de Máximos y Mínimos Universidad de Santiago de Chile Autores: Miguel Martínez Concha Facultad de Ciencia Carlos Silva Cornejo Departamento de Matemática y CC Emilio Villalobos Marín 1 Aplicaciones de Máximos y Mínimos 1.0.1

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles
Sitemap