EJERCICIOS SOBRE MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS SOBRE MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES"

Transcripción

1 EJERCICIOS SOBRE MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES ) Dadas las matrices 7 A, 4 5 B y 4 C, comprueba las siguientes igualdades: A (B C)(A B) C A (B+C)(A B)+(A C) (A+B) C(A C)+(B C) ) Dadas las matrices 7 A y B, calcula: A+B B A B (-A) A A-B B ) Sean 5 A y 6 B, encuentra una matriz X que cumpla: X- A5 B 4) Encuentra dos matrices, A y B, que cumplan: + 4 B A y B A 5) Efectúa las siguientes operaciones con las matrices dadas: A, 7 4 B, C A+B+C A B+A C (A-B) C A B C 6) Dada la matriz A, comprueba que ( ) I A. 7) Comprueba que A A-A-I, siendo A.

2 4 8) Consideramos la matriz A Demuestra que se verifica que A nula. Calcula razonadamente A y 9) Sea M Calcula también las matrices 5 A + I, siendo I la matriz unidad y la matriz e I la matriz identidad de orden. Calcula la matriz J tal que M J + I. J, J y J 5 97 ) Sea la matriz A. Calcula A y A. Encuentra los valores de a y b para que la a matriz A conmute con la matriz B b ) Dadas las matrices A y t t B, comprueba que ( ) t A B B A. ) Comprueba que la matriz 4 4 B 4 4 es la inversa de la matriz A. ) Comprueba que la matriz inversa de A es 6. 4 A 4) Calcula el rango de las siguientes matrices: A D 4 6 B E C F

3 5) Calcula la matriz X tal que X B AB, siendo A y B. m 6) Determina los valores de m para los que X 5 verifica que X X + I ) Comprueba que A A I, siendo A. Utiliza la igualdad anterior para 4 4 calcular A 4. 8) En un edificio hay tres tipos de viviendas: L, L4 y L5. Las viviendas L tienen 4 ventanas pequeñas y grandes; las L4 tienen 5 ventanas pequeñas y 4 grandes y las L5, 6 pequeñas y 5 grandes. Cada ventana pequeña tiene cristales y 4 bisagras y las grandes, 4 cristales y 6 bisagras. Escribe una matriz que describa el número y tamaño de ventanas de cada vivienda y otra que exprese el número de cristales y bisagras de cada tipo de ventana. Calcula la matriz que exprese el número de cristales y de bisagras de cada tipo de vivienda. 9) Resuelve por el método de Gauss los siguientes sistemas de ecuaciones: e) f) x y 7 5x+ y 7 x+ y z x+ y+ z 5x+ y+ z y+ z x y z x y + z x+ 4y z 6x 6y+ z 6 x y+ z 6 x+ y+ z 9 x y z x y+ z 5 x+ y z x 4y+ z x+ y+ z g) h) i) j) k) l) x+ y+ z 4x+ y z 6x+ y+ z x y+ z x y 4x+ y+ z x+ y+ z x+ y+ 5z x 5y+ 6z 9 y+ z x y x + y + z x+ y+ z 4x+ y z 5 x+ 4y 7z x y+ z 4t x y+ z+ t x y+ 5z+ 6t m) n) o) p) xy z x+ 5y+ z x+ y+ z x+ 7y+ 5z 5 x+ y+ z+ t x y + z t x + y z t x+ y+ z t x + y z + w x + z y + w x + z x + y y + z x + y + z

4 ) Dos amigos invierten cada uno. El primero coloca una cantidad A al 4% de interés, una cantidad B al 5% y el resto al 6%. El otro invierte las mismas cantidades a intereses del 5%, 6% y 4%, respectivamente. Determina las cantidades A, B y C sabiendo que el primero obtiene unos intereses de 6 y el segundo de 57. ) Una tienda ha vendido 6 ejemplares de un videojuego por un total de 684. El precio del original era de, pero también han vendido copias defectuosas con descuentos del % y del 4%. Sabiendo que el número de copias defectuosas vendidas fue la mitad del de originales, calcula a cuántas copias se les aplicó el % de descuento. ) *Dada la matriz 4 5 A 4, calcula 4 A, A,..., 8 A. ) *Calcula n A siendo 7 7 A 4) *Dada la matriz A, prueba que matriz I + A+ A es la inversa de I A A es la matriz nula. Prueba después que la 5) *Una matriz cuadrada se llama ortogonal cuando su inversa coincide con su traspuesta. 5 x Calcula x e y para que la matriz A y 5 sea ortogonal. 6) Tres amigos acuerdan jugar tres partidas de dados de forma que cuando uno pierda, entregará a cada uno de los otros dos una cantidad igual a la que cada uno posea en ese momento. Cada uno perdió una partida y al final cada uno tenía 4. Cuánto dinero tenía cada jugador al comenzar el juego? 7) Si se mezclan 6 litros de vino blanco con litros de vino tinto, se obtiene un vino de grados (% de alcohol). Si, por el contrario, se mezclan litros de blanco con 6 litros de tinto, se obtiene un vino de grados. Qué graduación tendrá una mezcla de 4 litros de vino blanco y 4 litros de tinto? 8) Si la altura de Álvaro aumentase el triple de la diferencia entre las alturas de David y Javier, Álvaro sería igual de alto que Javier. Las alturas de los tres suman 55 cm. Ocho veces la altura de David, es lo mismo que nueve la de Álvaro. Cuánto mide cada uno? 4

5 9) Una cooperativa farmacéutica distribuye un producto en tres formatos A, B, C, cuyos pesos y precios son: FORMATO PESO (G) PRECIO ( ) A 5.5 B 5.5 C A una farmacia se le ha suministrado un lote de 5 cajas con un peso de,5 kg. por un importe de Cuántos envases de cada tipo ha comprado la farmacia? ) Discute los siguientes sistemas de ecuaciones: x y z k x y + z x + y + kz x + y z x + y + z x + ay + 4z x y + z mx + y z x + 4y z e) f) x + y z x y + z 5x 5y + z m x y 4 y x + x + ky x y z x + y + z x + z x + y + 5z m ) Discute y resuelve según los valores de a los siguientes sistemas: ax+ y a x + ay x+ ay ax x ay ay ) Dado el sistema mx y, halla m para que: x my m No tenga soluciones. Tenga infinitas soluciones. Tenga solución única. Tenga una solución en la que x. ) Estudia el siguiente sistema según los valores de a x y ax y x+ y x+ 5y a x y m 4) Dado el sistema de ecuaciones mx+ y 4 x y 5

6 Haz un estudio de él según los diferentes valores del parámetro m. Resuelve el sistema en los casos que sea compatible. 5) Para qué valores de m es incompatible el siguiente sistema? x+ z 8 x+ y+ z x+ y+ mz 5 6) Resuelve por el método de Gauss el siguiente sistema de ecuaciones x-y+ 4z 8 lineales: x+ y+ z 7x-8y+ 8z a b 7) Sabiendo que 7, determina el valor de los siguientes determinantes: c d a b b c d d a b c d 8) *Resuelve las ecuaciones siguientes: b d a a c b ac bd + x x x + x x x x x 9) Calcula el valor de los determinantes siguientes: senx cos x e) f)

7 g) h) ) Calcula el valor de a que anula cada uno de los determinantes siguientes: 4 5 a a a + a + 6 a a + a a 4) Calcula: 4 + a + a + a 4+ a a a a a m m m 4) Estudia el rango de las siguientes matrices: ) Estudia el rango de las siguientes matrices según los valores de a: a a a 4 8 a a a a 7

8 e) t + 4 t 4 4 t 44) Calcula el valor de este determinante dando el resultado factorizado: x x x x x x x x x x x x 45) Halla, en función de a, el valor de los determinantes siguientes: a+ a a a a a+ a a a a a+ a a a a a+ a a a a a a a a a 4 a 46) Estudia y resuelve los sistemas siguientes: x y z x + y + z x + z x + y + z x y 7z y + z x + y x + y + z 6 x y + z 5 x y + z e) x + y z + u 7 x y + z u 5 4x + y u 6 x + y z + u x + z u x y + z u 47) Discute y resuelve los sistemas siguientes según los distintos valores del parámetro k: 8

9 x y x + y 4x y k y x + 4 y + x + k x + y y z k x z y + z 6 x + y 4z k kx + y ky + z kx + y + z 48) Resuelve los siguientes sistemas homogéneos: x + y z x y z x y + z 9x + y + z x y + z 8x + y + 4z x + y z x + y + z t x + y z + t x + y + t x + y x + z x + t y + z + t 49) *Discute y resuelve los sistemas siguientes según los distintos valores del parámetro k: x y + z x + ay + z 8 ax + y + az x y + z x my z 5x + y z x y x + y a x + ( a + ) y a y z a x z y + z 6 x + y 4z a 5) Dada la matriz A, resuelve por el método de Gauss: t El sistema de ecuaciones lineales homogéneo cuya matriz de coeficientes es AA. t El sistema de ecuaciones lineales no homogéneo cuya matriz ampliada es A A, siendo la última columna los términos independientes. 5) Sea x A x Halla los valores de x para los que A tiene inversa. Calcula, si es posible, A - para x. 9

10 5) Dadas las matrices A 5, matriz X que verifica que AB+CXD. B, C 4 y 9 D 8 7, halla la 5) Halla X tal que AXB, donde A y B. 54) *Sean las matrices A y B Halla la matriz inversa de AB Halla el producto de B - por A -. Qué relación existe entre esta matriz y la del apartado anterior? 55) Comprueba que x y z 5 v xyzv. a b c 56) Sabiendo que d e f, calcula, sin desarrollar, el valor del determinante: g h i i g h f + c d + a e+ b c a b

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES REFLEXIONA Y RESUELVE Resolución de sistemas 2 Ò 2 mediante determinantes A A y Resuelve, aplicando x = x e y =, los siguientes sistemas de ecuaciones: A A

Más detalles

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA

EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean linealmente

Más detalles

EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS. 1. (2001) De las matrices,,,

EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS. 1. (2001) De las matrices,,, EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS SELECTIVIDAD 1. (2001) De las matrices,,, determina cuáles tienen inversa y en los casos en que exista, calcula el determinante de dichas matrices. 2.

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS UNIDAD SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Página 30 Ecuaciones y sistemas de ecuaciones con dos incógnitas. Podemos decir que las dos ecuaciones siguientes son dos datos distintos? No es cierto que

Más detalles

EJERCICIOS DE DETERMINANTES

EJERCICIOS DE DETERMINANTES EJERCICIOS DE 1) Si m n = 5, cuál es el valor de cada uno de estos determinantes? Justifica las p q respuestas: 2) Resuelve las siguientes ecuaciones: 3) Calcula el valor de estos determinantes: 4) Halla

Más detalles

TEMA 1: MATRICES. x 2. Ejercicio y B =, se pueden encontrar matrices C y D para que existan los productos ACB y BDA?.

TEMA 1: MATRICES. x 2. Ejercicio y B =, se pueden encontrar matrices C y D para que existan los productos ACB y BDA?. TEMA : MATRICES Ejercicio.- 0 2 2 Dadas las matrices A = y B = -2 0 5, calcula BBt AA t. Ejercicio 2.- 0 x 2 Sean las matrices A =, B = y C =, halla x e y para que se 2 y verifique ABC = A t C. Ejercicio

Más detalles

1º Ejercicios para practicar:

1º Ejercicios para practicar: 1º Ejercicios para practicar: 1) Efectúa todos los posibles productos entre las siguientes matrices: 2) Calcula A 2 3A I, siendo A = e I la matriz identidad de orden 2. 3) Realiza la operación B A + C

Más detalles

Ejercicio 3 de la Opción A del modelo 1 de 2008.

Ejercicio 3 de la Opción A del modelo 1 de 2008. Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva,

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Página 9 REFLEXIONA Y RESUELVE Ecuaciones e incógnitas. Sistemas de ecuaciones. Podemos decir que las dos ecuaciones siguientes son dos datos distintos? No es cierto

Más detalles

Sistemas lineales con parámetros

Sistemas lineales con parámetros 4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva,

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1- Calcular, si es posible, los productos AB y BA A = ( 1 2 4), B = 5 3 0 2- Comprobar que la matriz X = 4 2 1 3 verifica la ecuación X 2 7X +

Más detalles

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

1. Justifica por qué no es cierta la igualdad: (A + B)$(A B) = A 2 B 2 cuando A y B son dos matrices cuadradas cualesquiera.

1. Justifica por qué no es cierta la igualdad: (A + B)$(A B) = A 2 B 2 cuando A y B son dos matrices cuadradas cualesquiera. º BTO. C.S. Ejercicios de matrices sistemas. Justifica por qué no es cierta la igualdad: (A + B)$(A B) A B cuando A B son dos matrices cuadradas cualesquiera.. Sea A una matriz de dimensión 3%. (a) Existe

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS UNIDAD SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Página 0 Ecuaciones y sistemas de ecuaciones con dos incógnitas. Podemos decir que las dos ecuaciones siguientes son dos datos distintos? No es cierto que

Más detalles

ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE A 2 1 0

ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE A 2 1 0 ÁLGEBRA (Selectividad 017) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE 017 1 Andalucía, junio 17 0 x Ejercicio 3- Considera las matrices

Más detalles

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás 15 de noviembre de 2016 2 Índice general 1. Álgebra 7 1.1. Año 2000.............................

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 0 REFLEXION Y RESUELVE Resolución de sistemas Ò mediante determinantes y Resuelve, aplicando x x e y, los siguientes sistemas de ecuaciones: 3x 5y 73 a

Más detalles

2. [2014] [EXT-B] Sabiendo que el determinante de la matriz A = es 2, calcula los siguientes determinantes indicando, en

2. [2014] [EXT-B] Sabiendo que el determinante de la matriz A = es 2, calcula los siguientes determinantes indicando, en MasMatescom - + m [4] [EXT-A] Considera el siguiente sistema de ecuaciones: m++ -+ +m a) Halla los valores del parámetro m para los que el sistema tiene una única solución b) Halla los valores del parámetro

Más detalles

Sistemas de Ecuaciones

Sistemas de Ecuaciones Sistemas de ecuaciones P.A.U. 1. Considerar el sistema de ecuaciones: 2x 2y z = 4 x + 2y 2z = 1 x z = 1 a) Existe una solución del mismo en la que y = 0? b) Resolver el sistema homogéneo asociado al sistema

Más detalles

3. A = A = Se dice que dos matrices A y B son semejantes cuando cuando existe una matriz P invertible tal que: AP = PB.

3. A = A = Se dice que dos matrices A y B son semejantes cuando cuando existe una matriz P invertible tal que: AP = PB. MasMatescom Colección B Resuelve el sistema 5X + 3Y A 3X + Y B, sabiendo que X e Y son matrices cuadradas de orden A 0-4 5 B - - 9 Considera la matriz A 0 3 4-4 -5-3 4 a) Siendo I la matriz identidad 3x3

Más detalles

Determina si existe, la matriz X que verifica. propiedades que utilices, los siguientes determinantes:

Determina si existe, la matriz X que verifica. propiedades que utilices, los siguientes determinantes: 1. Considera las matrices A=( ) ( ). Determina si existe, la matriz X que verifica.sol ( ) 2. Se sabe que ( ).Calcula, indicando las propiedades que utilices, los siguientes determinantes: a) SOL. a) 24

Más detalles

, calcula: y C = , sabiendo que X y Y son matrices de dimensión 2x3 y A = A = , siendo abc 0.

, calcula: y C = , sabiendo que X y Y son matrices de dimensión 2x3 y A = A = , siendo abc 0. MasMatescom Colección B Dadas las matrices A - -3, B - - C - - -, calcula: a) A+B-C t ; b) (A+B)C ; c) AB+C ; d) (A-B)(A+C) Resuelve el sistema X + Y A X - 3Y B, sabiendo que X Y son matrices de dimensión

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EN EL ESPACIO 4 6 7 8 9 0 Calcula las ecuaciones paramétricas de la recta que pasa por el punto P(7,, ) y tiene la dirección del vector k. ACTIVIDADES x 7 y z Halla la ecuación continua

Más detalles

- sen(x) cos(x) cos(x) sen(x)

- sen(x) cos(x) cos(x) sen(x) EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 7-X-4 CURSO 4- Opción A.- a) [ punto] Si A y B son dos matrices cuadradas y del mismo orden, es cierta en general la relación

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES - Considere el sistema 3 5 7 0 3 3 6 0 3 4 6 0 a) Estudie para qué valores del número real a, la única solución del sistema es la nula. b) Resuélvalo, si

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales Grado en Óptica y Optometría Curso 00-0 Hoja de ejercicios n o Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule A + B, A B, AB, BA, AA, BB. 0 0 A = 3 0 0 B =

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Apuntes Tema 11 Sistemas de ecuaciones 11.1 Definiciones Def.: Se llama sistema de ecuaciones lineales a un conjunto de igualdades dadas de la siguiente forma: a 11 x 1 + a 12 x 2 + a 1n x n = b 1 a 21

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales Actividades de Enseñanza-Aprendizaje. Resuelve los siguientes sistemas de ecuaciones lineales : 3x + y + z = 5 a) x + y = 0 b) x + 3 y + z = x + 5 y = 3

Más detalles

Problemas de Álgebra. 1.1 Matrices, Exámenes de Ciencias Sociales. Problema 1 Sean las matrices A = , B = , C =

Problemas de Álgebra. 1.1 Matrices, Exámenes de Ciencias Sociales. Problema 1 Sean las matrices A = , B = , C = Capítulo 1 Problemas de Álgebra 1.1 Matrices, Exámenes de Ciencias Sociales Problema 1 Sean las matrices A = 2 1 0 0 2 1 ), B = 2 1 2 2 ), C = 1 2 0 2 2 0 1. Calcule la matriz P que verifica B P A = C

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 47 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) - Calcular los siguientes determinantes: 3 3 a) b) 3 5 5 3 4 5 Hoja : Matrices y sistemas de ecuaciones lineales

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 1. Estudiar el sistema de ecuaciones según los valores del parámetro a. ax + y + z = a x y + z = a 1 x + (a 1)y + az = a + 3 Resolverlo (si es posible) para a = 1. (Junio

Más detalles

EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO

EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO 2016-17 1 2 Ejercicio 1º.- Considera las matrices A 1 1 y B 0 1 1 0 a) (1,25 puntos) Encuentra las matrices X e Y tales que X Y = A T y 2X Y = B. b)

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 7 Curso 008-009 Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1. Resuelve por el método de Gauss los siguientes sistemas: a. b. c. d. e. 2x y z 3 3x 2y z 4 5x 4y 2z 3 x 2y 3z 3 2x 3y 2z 5 3x 8y z 13 x 2y 6z

Más detalles

6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial:

6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial: Ejercicios. Escribe la matriz traspuesta de: 2 3 3 B= 0 4 3 2 4 C= 2 3 2. Se consideran las matrices: 0 3 2 2 2 2 0 2 3 B= 0 4 C=2 4 3 0 2 5 Calcula: 3A, 3A + 2C, A C, C A y A B. 3. Dadas las matrices

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

1. Las cantidades compradas, en litros, de tres clases de vino, se reflejan en la matriz fila: L = ( )

1. Las cantidades compradas, en litros, de tres clases de vino, se reflejan en la matriz fila: L = ( ) CAPÍTULO 6. MATRICES Y DETERMINANTES 03 6.3. EJERCICIOS. Las cantidades compradas, en litros, de tres clases de vino, se reflejan en la matriz fila: B T R L = ( 80 50 00 ) donde B=Blanco, T=Tinto yr=rosado,

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 5 Curso 006-007 Matrices, determinantes y sistemas lineales 8. Dadas las matrices A y B siguientes, calcule

Más detalles

, siendo A t la matriz traspuesta de A. 5. [2013] [EXT-A] a) Discutir el sistema de ecuaciones lineales según los valores del parámetro m: 1 2.

, siendo A t la matriz traspuesta de A. 5. [2013] [EXT-A] a) Discutir el sistema de ecuaciones lineales según los valores del parámetro m: 1 2. MasMatescom [4] [EXT-A] a) Resolver la siguiente ecuación matricial X A = B-C, siendo A = 5, B = - y C = - b) Sean F, F y F las filas de una matriz cuadrada de orden cuyo detereminante vale 5 Calcular

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva 2, Ejercicio 4, Opción A Reserva

Más detalles

solucionario matemáticas II

solucionario matemáticas II solucionario matemáticas II UNIDADES 8-4 bachillerato 8 Determinantes 4 9 Sistemas de ecuaciones lineales 46 Fin bloque II 0 Vectores 8 Rectas planos en el espacio 68 Propiedades métricas 08 Fin bloque

Más detalles

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 3 Curso 005-006 Matrices, determinantes y sistemas lineales 54. Dadas las matrices A y B siguientes, calcule

Más detalles

ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 ÁLGEBRA (Selectividad 015) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 015 1 Aragón, junio 15 1 (3 puntos) a) (1,5 puntos) Considera la matriz y los vectores siguientes:

Más detalles

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2 Álgebra lineal Curso 2008-2009 Tema 2 Hoja 1 Tema 2 ÁLGEBRA SUPERIOR 1 Expresar los siguientes sistemas lineales en notación matricial a y 1 = 2x 1 + 3x 2 y 2 = 4x 1 + 2x 2 b y 1 = 10x 1 + 12x 2 y 2 =

Más detalles

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5

Más detalles

mx-y = m 1. [2014] [EXT] Considere el sistema de ecuaciones lineales

mx-y = m 1. [2014] [EXT] Considere el sistema de ecuaciones lineales MasMatescom mx-y = m [04] [EXT] Considere el sistema de ecuaciones lineales, para m x+(m-4)y = m+ a) Discuta el sistema de ecuaciones para los diferentes valores del parámetro m b) Resuelva el sistema

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MATRICES a) º) Escribir los siguientes sistemas en forma matricial: x+ y= x + y = 0 x+ y z = x+ y+ z = 0 ; b) x y= 3 ; c) y + z = ; d) 6x + y = 4 x + z = 3 x = 3 y = 4 z = 5 ; e) x+y+z+t=3

Más detalles

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría 6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES X =, siendo 02 M2. tal que AC = B, siendo A =

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES X =, siendo 02 M2. tal que AC = B, siendo A = MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1.- Calcular, si es posible, los productos AB y BA A = ( 1 2 4), B = 5 3 0 2.- Comprobar que la matriz X = 4 2 1 3 verifica la ecuación X 2 7X

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden 2 y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 24 24 = 0 Aplica la teoría.

Más detalles

Un sistema de ecuaciones lineales es un conjunto de dos o más ecuaciones lineales. es un sistema de 3 ecuaciones lineales con 3 incógnitas

Un sistema de ecuaciones lineales es un conjunto de dos o más ecuaciones lineales. es un sistema de 3 ecuaciones lineales con 3 incógnitas 1.- CONCEPTO DE SISTEMA DE ECUACIONES LINEALES. ECUACIÓN MATRICIAL Un sistema de ecuaciones lineales es un conjunto de dos o más ecuaciones lineales. Por ejemplo, x 3y 2z 2 3x 4z 2x 2y 3z 1 es un sistema

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. SISTEMAS DE ECUACIONES - Considera el siguiente sistema de ecuaciones lineales 3 3 3 5 a) Calcula α de manera que al añadir una tercera ecuación de la forma 7 el sistema resultante tenga las mismas soluciones

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción B Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva

Más detalles

3 Sistemas de ecuaciones

3 Sistemas de ecuaciones Sistemas de ecuaciones.i. Resuelve los siguientes sistemas de ecuaciones: ACTIVIDADES INICIALES x + y = 5 4x y = x + y 6x y c) x + y = 5 4x + y = 7 d) x + y 5x y x+ y = 5 4x + y = 0 8x = 8 x =, y = 4x

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva

Más detalles

11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN

11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN ÍNDICE 11SISTEMAS DE ECUACIONES LINEALES 219 111 DEFINICIÓN DE ECUACIÓN LINEAL 219 112 DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN 220 113 EQUIVALENCIA Y COMPATIBILIDAD 220 11 REPRESENTACIÓN MATRICIAL

Más detalles

MATEMÁTICAS. TEMA 1 Sistemas de Ecuaciones. Método de Gauss.

MATEMÁTICAS. TEMA 1 Sistemas de Ecuaciones. Método de Gauss. MATEMÁTICAS TEMA Sistemas de Ecuaciones. Método de Gauss. ÍNDICE. Introducción. 2. Ecuaciones lineales.. Sistemas de ecuaciones lineales. 4. Sistemas de ecuaciones escalonado ó en forma triangular.. Métodos

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO ) D = ( 4 2

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO ) D = ( 4 2 EXAMEN DE MATEMATICAS II 1ª ENSAYO (ÁLGEBRA) Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO 2016-17 Opción A 1.- Considera las matrices A = ( 1 2 1 0 0 2 1 ), B = ( 2 1 0) y C = ( 1 0 0 1 5 0 ) 3 2 1 a)

Más detalles

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma: TEMA Sistemas de ecuaciones SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades de la forma: a a an n b a

Más detalles

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008 Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo

Más detalles

Escuela de Matemáticas

Escuela de Matemáticas Escuela de Matemáticas Universidad de Costa Rica MA-004: Álgebra Lineal Prácticas Sistemas de ecuaciones lineales, Matrices Determinantes MSc Marco Gutiérrez Montenegro 07 Sistemas de ecuaciones lineales

Más detalles

BOLETÍN DE MATRICES 2 IES A Sangriña Curso 2016/ Calcula la matriz inversa, si existe, usando el método de Gauss:

BOLETÍN DE MATRICES 2 IES A Sangriña Curso 2016/ Calcula la matriz inversa, si existe, usando el método de Gauss: *** OBLIGATORIOS *** 1. Efectúa todos los posibles productos: 2. Calcula la matriz inversa, si existe, usando el método de Gauss: 3. Sean y. Encuentra X para que cumpla: 3 X 2 A = 5 B 4. Encuentra dos

Más detalles

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D).

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D). ÁLGEBRA DE MATRICE Página 48 Ayudándote de la tabla... De la tabla podemos deducir muchas cosas: Al consejero A no le gusta ninguno de sus colegas como presidente. B solo tiene un candidato el C. Dos consejeros

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Reserva, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción A Reserva

Más detalles

ÁLGEBRA. 2. [2,5 puntos] Discutir y resolver el siguiente sistema dependiente del parámetro x λy 0 λx y 2 2x λz 0

ÁLGEBRA. 2. [2,5 puntos] Discutir y resolver el siguiente sistema dependiente del parámetro x λy 0 λx y 2 2x λz 0 ÁLGEBRA Junio 94. [,5 puntos] Comprueba que el determinante el proceso que sigues. 3 3 3 3 es nulo sin desarrollarlo. Explica Se basa en la propiedad: si a una línea le sumamos una combinación lineal de

Más detalles

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0)

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0) 53 EJERCICIOS de DETERMINANTES º BACH. Cálculo de determinantes. Propiedades: 1. Calcular los siguientes determinantes de orden : a) 7 1 b) 4 11 4 6 0 c) 0 0 3 1 d) 3 7 3 7 e) 7 1 4 1 f) 33 55 3 5 g) 13

Más detalles

. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1

. Probar que las matrices de la forma B = k A + r I, donde k y r son números. 2x + az = 0. ax + y = n. Calcular: 0 1 ÁLGEBRA 1 (Junio, 1994) Comprueba que el determinante 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 3 es nulo sin desarrollarlo Explica el proceso que sigues (Junio, 1994) Considerar la matriz A = 1 1 1 reales e I la

Más detalles

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0)

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0) a a a a 33 EJERCICIOS de DETERMINANTES º BACH. CC. SS. Cálculo de determinantes por Sarrus 1. Calcular los siguientes determinantes de orden : a) 7 1 b) 4 11 4 6 0 c) 0 0 3 1 d) 3 7 3 7 e) 7 1 4 1 f) 33

Más detalles

( ) según los valores del parámetro a. Ejercicio 3. Calcula el valor de los siguientes determinantes teniendo en cuenta estos datos:

( ) según los valores del parámetro a. Ejercicio 3. Calcula el valor de los siguientes determinantes teniendo en cuenta estos datos: MATEMÁTICAS II ÁLGEBRA Y ANÁLISIS ACTIVIDADES PAU Ejercicio. Condera las matrices A = m, B = y C =. (a) Para qué valores de m tiene solución la ecuación matricial A.X + B = C? (b) Resuelve la ecuación

Más detalles

Sistemas de ecuaciones. Método de Gauss

Sistemas de ecuaciones. Método de Gauss Unidad Sistemas de ecuaciones. Método de Gauss Actividades. Si se designa por el número de mujeres e y el número de hombres, se tiene: + y = 4 > y, y {0} Se trata, pues, de encontrar números naturales

Más detalles

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0)

(Soluc: a) 30; b) -66; c) 0; d) 0; e) 0; f) 0; g) 2; h) -50; i) 0; j) 0; k) 0; l) 0) 54 EJERCICIOS de DETERMINANTES º BACH. Cálculo de determinantes por Sarrus 1. Calcular los siguientes determinantes de orden : a) 7 1 b) 4 11 4 6 0 c) 0 0 3 1 d) 3 7 3 7 e) 7 1 4 1 f) 33 55 3 5 g) 13 6

Más detalles

MATRICES UNIDAD 2. Página 50

MATRICES UNIDAD 2. Página 50 UNIDAD MATRICE Página 50 1. A tres amigos, M, N, P, se les pide que contesten a lo siguiente: Crees que alguno de vosotros aprobará la selectividad? Di quiénes. Estas son las respuestas: M opina que él

Más detalles

DETERMINANTES, MATRIZ INVERSA Y ECUACIONES MATRICIALES

DETERMINANTES, MATRIZ INVERSA Y ECUACIONES MATRICIALES MATRICES Ejercicio 1. Modelo 2.007 Encontrar todas las matrices X cuadradas 2x2 que satisfacen la igualdad XA = AX en cada uno de los siguientes casos: a. A = ( 1 0 0 3 ) b. A = ( 0 1 3 0 ) Ejercicio 2.

Más detalles

2x-y+3z = 1 x+2y-z = 2

2x-y+3z = 1 x+2y-z = 2 MasMatescom [ANDA] [JUN-A] Un cajero automático contiene sólo billetes de 0, 0 y 50 euros En total hay 30 billetes, con un importe de 3000 euros (a) Es posible que en el cajero haya el triple número de

Más detalles

DETERMINANTES UNIDAD 3. Página 76

DETERMINANTES UNIDAD 3. Página 76 UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Tema 3 SISTEMAS DE ECUACIONES 1.- Se consideran las matrices 1 2 λ A = 1 1 1 y 1 3 B = λ 0, donde λ es cualquier número real. 0 2 a) Encontrar los valores de λ para los que AB es invertible b) Determinar

Más detalles

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES Departamento de Matemática Aplicada II EEI ÁLGEBRA Y ESTADÍSTICA Boletín n o 1 (2010-2011 MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Sean A, B, C, D y E matrices de tamaño 4 5, 4 5, 5 2,

Más detalles

y C= a 0 1

y C= a 0 1 .- CONCEPTO DE MATRIZ Escriba la matriz 2 x 3 en la que a ij = i 4j 2 Calcule, si es posible, los valores de a b para que sean iguales las matrices 3a b 9 b a 7 2b a 7 A= B= a+ b 2 a 3b 3 3 a 3.- OPERACIONES

Más detalles

m m m 1 2x + y = 4 a x + y = a ax + y =1

m m m 1 2x + y = 4 a x + y = a ax + y =1 pág.1 HOJA 1: EJERCICIOS DE SISTEMAS DE ECUACIONES 1.- Resuelve los sistemas de ecuaciones lineales siguientes: a) x 2y 10 2x 5y 23 b) 3x 2y z 5 2x 3y z 1 2x y 3z 11 a) x=4, y=3 b) x=2, y=-2, z=3 2.- Estudia

Más detalles

Tema 2: Determinantes

Tema 2: Determinantes Tema : Determinantes.- a) Encontrar los valores de λ para los que la matriz λ A = 0 λ λ 0 es invertible b) Para λ = hallar la inversa de A comprobar el resultado c) Resolver el sistema x 0 A = 0 z 0 para

Más detalles

Curso ON LINE Tema 5 LAS MATRICES

Curso ON LINE Tema 5 LAS MATRICES Curso ON LINE Tema LAS MATRICES Introducción a las matrices. Concepto de matri. Terminología: - Elemento, fila, columna dimensión u orden. Representación algebraica de una matri. Igualdad de matrices.

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

ECUACIONES. Ejercicio nº 1.- Dada la ecuación: responde razonadamente:

ECUACIONES. Ejercicio nº 1.- Dada la ecuación: responde razonadamente: ECUACIONES Ejercicio nº 1.- Dada la ecuación: x 1 x 1 5 3x 7 responde razonadamente: a Qué valor obtienes si sustituyes x 3 en el primer miembro? b Qué obtienes si sustituyes x 3 en el segundo miembro?

Más detalles

Relación de problemas. Álgebra lineal.

Relación de problemas. Álgebra lineal. Relación de problemas Álgebra lineal Tema 1 Sección 1 Matrices Determinantes Sistemas lineales Matrices Ejercicio 11 Consideremos las siguientes matrices: ( 1 2 A = 1 1 ) ( 1 1 B = 0 1 ) C = 1 0 0 0 1

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula

Más detalles

Matrices 1 (Problemas). c

Matrices 1 (Problemas). c º Bachillerato Matrices 1 (Problemas) 1.- Efectúa las siguientes operaciones con matrices: a) 1 4 5 6 + b) 5 7 9 11 1 1 1 1 1 1 c). 4 d) 6. 1 6 1 18 1 g) 0 0 0 0 a 0 b 0. 0 b 0 0 0 c c 0 0.- Siendo A =

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Reserva, Ejercicio 3, Opción A Reserva, Ejercicio 4, Opción A Reserva 3, Ejercicio 3, Opción A Reserva

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M [email protected], [email protected], [email protected] 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2

Más detalles
Sitemap