11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:"

Transcripción

1 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y 18 (6) y 2. Determinar los valores máximo y mínimo de la función F(x,y) = 2x - 8y sometida a las restricciones: (1) 3x - 2y 12 (3) x - 4y -20 (5) x 0 (2) 3x + 2y 24 (4) x + 2y 4 (6) y 0 3. Hallar analítica y gráficamente el máximo y el mínimo de las funciones: F 1 (x,y) = 2x - y F 2 (x,y) = -3x - 3y F 3 (x,y) = -x + 2y F 4 (x,y) = 5x + 5y sometida a las restricciones: (1) x + y 10 (2) x + y 2 (3) x - y 5 0 (6) y 0 (4) x - y -5 (5) x 4. Calcular los valores máximo y mínimo de la función F(x,y) = 2x + y sujeta a las restricciones: 16 (1) 0 x 6 (2) 0 y 10 (3) 8 2x + y

2 5. Hallar los valores máximo y mínimo de la función F(x,y) = 5x - 3y sujeta a las restricciones: y 0 (1) x + y 3 (2) 2x + y 8 (3) x 0 (4) 6. a) Encontrar el máximo y el mínimo de la función F 1 (x,y) = - 4x - 2y sometida a las restricciones: (1) 3x + y 300 (2) x + 2y 200 b) Determinar el máximo y el mínimo de la función F 2 (x,y) = - x + 3y sujeta a las mismas restricciones anteriores. 7. Calcular el máximo y el mínimo de cada una de las funciones: F 1 (x,y) = 3x + 4y F 2 (x,y) = 10x - 30y F 3 (x,y) = 12x - 3y sometidas a las restriciones: (1) x + y 14 (3) 4x + y 16 (2) 2x + 3y 36 (4) x - 3y 0 8. Calcular el máximo y el mínimo de la función F(x,y) = 3x + 4y sujeta a las restricciones: (1) x - 2y 0 (2) 2x - y 0 (3) x + y 0 9. Calcular el máximo y el mínimo cada una de las funciones: 4y F 1 (x,y) = -x - y F 2 (x,y) = 2x - 2y F 3 (x,y) = -2x + F 4 (x,y) = 3y

3 sometidas a las restricciones: (1) x + y 4 (2) 3x + y 6 (3) x - 2y (4) x 0 (5) y Representar la región del plano determinada por las inecuaciones: (1) 2x + y 5 (2) x - y (3) x - 2y 1 (4) 2x a) Cuántos puntos con las dos coordenadas enteras existen en dicha región? b) Calcular el máximo y el mínimo, de entre todos los puntos de coordenadas enteras, de las funciones: F 1 (x,y) = 2x - y F 2 (x,y) = -3x - 3y Problemas con enunciado. 1. Un ave de rapiña necesita para subsistir al día 30 unidades de proteínas, 20 de grasas y 8 de vitaminas. Sus presas son dos tipos de animales: ratones que le proporcionan 3 unidades de proteínas, 4 de grasas y 1 de vitaminas y palomas que le proporcionan 6 unidades de proteínas, 2 de grasas y 1 de vitaminas. Si cazar y comer un ratón le cuesta 7 unidades de energía y una paloma le cuesta 12 unidades de energía, cuántas presas de cada clase debe cazar para satisfacer sus necesidades con el menor gasto de energía? 2. Con 80 kg de acero y 120 de aluminio se quieren fabricar bicicletas de montaña y de paseo que se venderán a 200 euros y 150 euros respectivamente. Para la de montaña son necesarios 1 kg de acero y 3 de aluminio y para la de paseo 2 kg de cada uno de los metales. Cuántas bicicletas de paseo y cuántas de montaña se deben fabricar para obtener el máximo beneficio?

4 3. Para abonar un parcela de huerta se necesitan, por lo menos, 8 kg de nitrógeno y 12 kg de fósforo. Se dispone de un producto M cuyo precio es de 3 euros por kilogramo y que contiene un 10 % de nitrógeno y un 30 % de fósforo y otro producto N que contiene un 20 % de nitrógeno y un 20 % de fósforo, y cuyo precio es de 4 euros por kilogramo. Qué cantidades se deben tomar de M y N para abonar la parcela con el menor gasto posible? 4. Un comerciante desea comprar dos tipos de frigoríficos, F1 y F2. Los del tipo F1 cuestan 300 euros y los del tipo F2, 500 euros. Solo dispone de sitio para 20 frigoríficos y de 7000 euros para hacer las compras. Cuántos frigoríficos ha de comprar de cada tipo para obtener beneficios máximos en la venta posterior, sabiendo que en cada frigorífico gana el 30 % del precio de compra? 5. Una industria vinícola produce vino y vinagre. El doble de la producción de vino es siempre menor o igual que la producción de vinagre más cuatro unidades. Además el triple de la producción de vinagre más cuatro veces la producción de vino es siempre menor o igual que 18 unidades. Hallar el número de unidades de cada producto que se deben producir para alcanzar un beneficio máximo, sabiendo que cada unidad de vino deja un beneficio de 8 euros y cada unidad de vinagre 2 euros. 6. En la fabricación de piensos se utilizan tres ingredientes, P, Q, y R. Se dispone de 90 toneladas de P, 90 de Q y 70 de R, y se desea fabricar dos tipos de pienso M1 y M2. Una tonelada de pienso M1 requiere 2 toneladas de P, 1 de Q y 1 de R y se vende a 12 euros. Una tonelada de M2 requiere 1 tonelada de P, 2 de Q y 1 de R y se vende a 10 euros. Cuántas toneladas de cada pienso deben facturarse para obtener el mayor beneficio? 7. Una empresa elabora dos productos, cada uno de ellos en una cantidad que es múltiplo de La demanda de ambos productos conjuntamente es mayor de 3000 unidades y menor de 6000 unidades. Se sabe que la cantidad demandada de un producto es mayor que la mitad y menor que el doble del otro. Para obtener los máximos beneficios vendiendo toda la

5 producción, cuál debe ser la producción de cada uno de ellos si uno lo vende a un precio que es el triple que el del otro? 8. Se quiere elaborar una dieta diaria para ganado que satisfaga unas condiciones mínimas de contenidos vitamínicos al día: 2 mg de vitamina A, 3 mg de vitamina B, 30 de la C y 2 de la D. Para ello se van a mezclar dos tipos de piensos P y Q, cuyo precio por kilogramo es para ambos de 30 pesetas, y cuyo contenido vitamínico por kg se expresa en la tabla. Cómo deben mezclarse los piensos para que el gasto sea mínimo? A B C D P 1 mg 1 mg 20 mg 2 mg Q 1 mg 3 mg 7.5 mg 0 mg 9. Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0.05 euros por impreso repartido y la empresa B, con folletos más grandes. le paga 0.07 euros por impreso. El estudiante lleva dos bolsas: una para los impresos de tipo A, en la que le caben 120, y otra para los de tipo B, en la que caben 100. Ha calculado que cada día puede repartir 150 impresos como máximo. Cuántos impresos habrá de repartir de cada clase para que su beneficio diario sea máximo? 10. Para el tratamiento de cierta enfermedad hay que suministrar a los pacientes tres tipos de vitaminas, a, b, g. Quincenalmente precisan al menos, 875 mg de vitamina a, 600 mg de vitamina b, y 400 mg de vitamina g. En el mercado dichas vitaminas están en dos productos A y B. Cada comprimido de A tiene 25 mg de vitamina a, 20 mg de vitamina b, y 30 mg de vitamina g. Cada comprimido de B tiene 35 mg de vitamina a, 30 mg de vitamina b, y 10 mg de vitamina g. El coste de cada comprimido de A es de 0.05 euros y el de B de 0.06 euros. Qué número de comprimidos de cada producto hará más económico el tratamiento? 11. En una empresa se fabrican diariamente dos tipos de aparatos. A y B. Como máximo pueden fabricarse 3 aparatos de cada tipo y obligatoriamente, al menos, un aparato del tipo B. Indicar todas las posibilidades de fabricación si se quieren realizar ventas por importe superior a 60 euros,

6 teniendo en cuenta que los precios de los artículos A y B son, respectivamente, 30 euros y 10 euros. 12. Un ganadero debe suministrar un mínimo diario de 4 mg de vitamina A y 6 mg de vitamina B en el pienso que da a sus reses. Dispone para ello de dos tipos de pienso P1 y P2 cuyos contenidos vitamínicos por kilogramo son los siguientes: A B P1 2 6 P2 4 3 Si el kg de pienso P1 vale 0.4 euros y el de P2 vale 0.6 euros, cómo debe suministrar las vitaminas requeridas en un coste mínimo? 13. Un veterinario aconseja a un granjero dedicado a la cría de aves una dieta mínima que consiste en 3 unidades de hierro y 4 unidades de vitamina diarias. El granjero sabe que cada kilo de maíz proporciona 2.5 unidades de hierro y 1 de vitaminas y que cada kilo de pienso compuesto proporciona 1 de hierro y 2 de vitaminas. Sabiendo que el kilo de maíz vale 0.3 euros y el de pienso compuesto 0.52 euros, se pide:? a) Cuál es la composición diaria de la dieta que minimiza los costes b) Cambiaría la solución del problema si por escasez en el mercado, el granjero no pudiera disponer de más de 1 kilo diario de pienso compuesto? 14. Un agricultor utiliza un invernadero de 300 m 2 para dos tipos de cultivo. Los gastos de cada uno de ellos son de 50 y 20 euros por metro cuadrado, siendo los beneficios que se obtienen de 300 y 100 euros por metro cuadrado respectivamente. Si se dispones de 7500 euros para invertir, qué superficie debe dedicar a cada tipo de cultivo para obtener un beneficio máximo?

7 15. Un sastre tiene 80 m 2 de tela de algodón y 120 m 2 de tela de lana. Un traje de caballero requiere 1 m 2 de algodón y 3 m 2 de lana y un vestido de señora necesita 2 m 2 de cada una de las telas. Calcular el número de trajes y vestidos que debe confeccionar el sastre para maximizar los beneficios si un traje y un vestido se venden por el mismo precio. 16. Una empresa conservera puede enlatar diariamente un máximo de 1000 kg de atún. Tiene dos tipos de envases, latas pequeñas y latas grandes, cuyo contenido neto es de 90 g y 400 g respectivamente. Por razones de producción, el número de latas pequeñas no puede superar el doble de las grandes. Si la ganancia empresarial es de 0.3 euros por lata pequeña y de 0.8 euros por lata grande, cómo debe planificarse la producción para que la ganancia sea máxima? 17. Una persona quiere invertir euros en dos tipos de acciones, A y B. Las del tipo A tienen más riesgo, pero producen un beneficio del 10 %. Las del tipo B son más seguras, pero producen solo el 7 %. Decide invertir como máximo euros en acciones del tipo A y, por lo menos, euros en acciones del tipo B. Además, quiere que lo invertido en A sea, por lo menos, igual a lo invertido en B. Cómo debe invertir los euros para que el beneficio anual sea máximo? 18. Se necesita una dieta que proporciones a un animal 3000 calorías y 80 unidades de proteínas por día. En el mercado hay dos alimentos básicos que pueden usarse para preparar la dieta. El alimento A1 cuesta o.20 euros por kilo y contiene 600 calorías y 2 unidades de proteínas. El alimento A2 cuesta o.10 euros por kilo y contiene 50 calorías y 8 unidades de proteínas. Determinar la combinación de alimentos más barata que satisfaga las necesidades de la dieta. 19. Una empresa tiene dos centros de producción C1 y C2 en los que fabrica tres tipos de artículos: A1, A2 y A3. Dicha empresa debe fabricar diariamente un mínimo de 360 unidades del artículo A1, 320 del A2 y 180 del A3. La producción por hora en cada centro es: en C1, 25 de A1, 30 de A2 y 10 de A3; en C2, 30 de A1, 20 de A2 y 18 de A3. Si cada hora de funcionamiento cuesta 800 euros en C1 y 1000 en C2, cuántas horas debe

8 funcionar cada centro para que produciendo, al menos, lo necesario, se reduzcan al mínimo los costes de producción? 20. Un pastelero fabrica dos tipos de pasteles de chocolate C1 y C2. El pastel C1 se hace con 1 litro de leche y 0.2 kilos de cacao y el pastel C2 con 1 litro de leche y 0.4 kilos de cacao. Por cada pastel del tipo C1 se obtiene un beneficio de 2 euros y por cada pastel del tipo C2 se obtiene un beneficio de 3.5 euros. La maquinaria disponible sólo permite fabricar como máximo 100 pasteles de cada tipo al día. Si le suministran diariamente 120 litros de leche y 40 kilos de cacao, cuántos pasteles de cada tipo debe fabricar y vender para que el beneficio obtenido sea máximo? 21. Dos almacenes A y B distribuyen fruta a tres mercados. El almacén A dispone de 15 toneladas de fruta diarias y el B de 20 toneladas, que reparten en su totalidad. Los tres mercados necesitan diariamente 12, 13 y 10 toneladas de fruta, respectivamente. Si el coste del transporte desde cada almacén a cada mercado está representado en la tabla, cómo se debería planificar el transporte de forma que el coste sea mínimo? Almacén Mercado 1 Mercado 2 Mercado 3 A B Dos yacimientos de oro A y B producen al año 2000 kg y 3000 kg de mineral de oro, respectivamente, que deben distribuirse a tres puntos de elaboración: C, D y E, que admiten 500 kg, 3500 kg y 1000 kg de mineral, respectivamente, al año. El coste del transporte en euros por kilogramo es el de la siguiente tabla. Cómo ha de distribuirse el mineral para que el transporte sea lo más económico posible? Coste C D E A B Para abastecer de madera a tres aserraderos A1, A2 y A3, hay dos

9 bosques, B1 y B2, que producen 26 y 30 toneladas respectivamente. Las necesidades de cada aserradero son: 20, 22 y 14 toneladas, respectivamente. Si los costes del transporte por tonelada de los bosques a los aserraderos son, en euros, los que figuran en la tabla, planificar el transporte de coste mínimo. A1 A2 A3 B B Una empresa compra en un lugar P unidades de un determinado producto y en un lugar G, unidades del mismo producto. Estas cantidades las guarda en tres almacenes A con capacidad para unidades, B con y C con El precio en euros de llevar una unidad del producto desde los lugares de compra hasta los almacenes viene indicado en la tabla siguiente. Cómo debe planificarse el almacenado del producto para que los gastos de transporte sean mínimos? A B C P G PÁGINA ANTERIOR ÍNDICE PÁGINA SIGUIENTE 1. INTRODUCCIÓ N 2. PLANTEAMIENT O DIDÁCTICO 3. UN POCO DE HISTORIA 4. DEFINICIÓN Y TERMINOLOGÍ A 5. TIPOS DE PROBLEMA S 6. INECUACIÓN LINEAL 7. SISTEMA DE INECUACIONE S 8. MÉTODOS DE SOLUCIÓN 9. APLICACIONE S 10. EL ALGORITMO DEL SIMPLEX 11. EJERCICIO S 12. BIBLIOGRAFÍ A Luis Barrios Calmaestra Ministerio de Educación. Año 2005

10

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

PROGRAMACIÓN LINEAL. Página 102. Página 103

PROGRAMACIÓN LINEAL. Página 102. Página 103 4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución: Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones

Más detalles

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20. PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde

Más detalles

Problemas de Investigación Operativa y Programación Matemática

Problemas de Investigación Operativa y Programación Matemática Problemas de Investigación Operativa y Programación Matemática Omar J. Casas López Septiembre 2002 Tema I : Introducción 1. Una factoría fabrica dos tipos de productos, A y B. Para su elaboración se requieren

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL

PROBLEMAS DE PROGRAMACIÓN LINEAL PROBLEMAS DE PROGRAMACIÓN LINEAL A.- Problemas generales B.- Problemas con porcentajes C.- Problemas de dietas D.- Problemas para profundizar A.- PROBLEMAS GENERALES Ejercicio 1.- En una fábrica se construyen

Más detalles

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

1º Dibuja las regiones factibles definidas por los siguientes sistemas: Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3

Más detalles

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución?

1.- Dibuja la región del plano determinada por estas desigualdades: Existe alguna restricción que se pueda suprimir sin que varíe la solución? HOJA DE EJERCICIOS 1.- Dibuja la región del plano determinada por estas desigualdades: x + y 4x + y 0 y 0 x + y 5, y calcula el máximo de la función F( x, y) = x + y en esta región. (Sol. (-1,4)). Existe

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

Tema 1. - SISTEMAS DE ECUACIONES.

Tema 1. - SISTEMAS DE ECUACIONES. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad - Tema. - SISTEMAS DE ECUACIONES. Ejercicio. ( ) a) ( puntos) Determine dos números sabiendo que al dividir el mayor por el menor obtenemos 7

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

EJERCICIOS METODO SIMPLEX

EJERCICIOS METODO SIMPLEX EJERCICIOS METODO SIMPLEX 1. Un empresario pretende fabricar dos tipos de congeladores denominados A y B. Cada uno de ellos debe pasar por tres operaciones antes de su comercialización: Ensamblaje, pintado

Más detalles

PPL PARA RESOLVER CON SOLVE

PPL PARA RESOLVER CON SOLVE PPL PARA RESOLVER CON SOLVE 1. Una compañía posee dos minas: la mina A produce cada día 1 tonelada de hierro de alta calidad, 3 toneladas de calidad media y 5 de baja calidad. La mina B produce cada día

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs.

Más detalles

Matemáticas aplicadas a las ciencias sociales II PL

Matemáticas aplicadas a las ciencias sociales II PL Matemáticas aplicadas a las ciencias sociales II PL 1) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de

Más detalles

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts

SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts SOLUCIONES 27. (Puntuación máxima: 3 Puntos) Una empresa fabrica dos tipos de colonia: A y B. La 1ª contiene un 15% de extracto de jazmín, un 20% de alcohol y el resto es agua, y la 2ª lleva un 30% de

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

02 Ejercicios de Selectividad Programación Lineal

02 Ejercicios de Selectividad Programación Lineal Ejercicios propuestos en 009 1.- [009-1-B-1] En un examen se propone el siguiente problema: F x, y = 6x+ 3y en la región Indique dónde se alcanza el mínimo de la función determinada por las restricciones

Más detalles

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss.

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss. Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ÁLGEBRA Junio 1994. Un aficionado a la Bolsa invirtió.000.000 de pesetas en acciones de tres empresas A, B

Más detalles

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID)

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) 1.- (Junio 99). Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

CONCEPTOS BÁSICOS DE PROGRAMACIÓN LINEAL.-

CONCEPTOS BÁSICOS DE PROGRAMACIÓN LINEAL.- PROGRAMACIÓN LINEAL CONCEPTOS BÁSICOS DE PROGRAMACIÓN LINEAL.- 1. Definición. Técnica de programación matemática para resolver problemas de optimización de recursos (maximización, minimización) cuando

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles

José Jaime Mas Bonmatí E-Mail: [email protected] IES LA ASUNCIÓN http://www.ieslaasuncion.org

José Jaime Mas Bonmatí E-Mail: josejaime@ieslaasuncion.org IES LA ASUNCIÓN http://www.ieslaasuncion.org 1. (PAU junio 2003 A1). Dada la siguiente ecuación matricial: 3 2 x 10 x 2 1 y 6 y 0 1 z 3 obtener de forma razonada los valores de x, y, z. 2. (PAU junio 2003 A2). Una compañía fabrica y vende dos modelos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

6 PROGRAMACIÓN LINEAL

6 PROGRAMACIÓN LINEAL 6 PROGRAMACIÓN LINEAL Introducción El tema comienza con una introducción a la programación lineal, en la que se exponen todos los conceptos necesarios como región factible, función objetivo, vector director

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio EJERCICIOS EJERCICIO 1 En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1

Más detalles

PRECIO DE COMPRA -- PRECIO DE VENTA -- GANANCIA

PRECIO DE COMPRA -- PRECIO DE VENTA -- GANANCIA 1 PRECIO DE COMPRA -- PRECIO DE VENTA -- GANANCIA 1. - Se han comprado 115 litros de vino por 69 euros. Cuál es el beneficio que se obtiene en cada litro de vino, si se vende a 1,5 euros el litro?. 2.

Más detalles

se trata de un problema de PROGRAMACIÓN LINEAL. Al conjunto de todas las soluciones del problema se le llama conjunto de soluciones factibles.

se trata de un problema de PROGRAMACIÓN LINEAL. Al conjunto de todas las soluciones del problema se le llama conjunto de soluciones factibles. TEMA 11: PROGRAMACIÓN LINEAL Ciertos problemas que se plantean en la economía, en la industria, en la medicina, tienen como objeto MAXIMIZAR O MINIMIZAR una función llamada FUNCIÓN OBJETIVO, sujeta a varias

Más detalles

UNIDAD 5: PROGRAMACIÓN LINEAL

UNIDAD 5: PROGRAMACIÓN LINEAL UNIDAD 5: PROGRAMACIÓN LINEAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- INECUACIONES LINEALES CON DOS INCÓGNITAS... 2 3.- SISTEMAS DE INECUACIONES LINEALES... 3 4.- PROGRAMACIÓN LINEAL. FORMULACIÓN

Más detalles

MAT. APLICADAS A LAS CIENCIAS SOCIALES II - P.A.E.U. ÁLGEBRA LINEAL

MAT. APLICADAS A LAS CIENCIAS SOCIALES II - P.A.E.U. ÁLGEBRA LINEAL MAT. APLICADAS A LAS CIENCIAS SOCIALES II - P.A.E.U. ÁLGEBRA LINEAL. - Maximizar y minimizar la función T(x,y)= -x+y, sujeta a las restricciones: y x 4, y+x 4, x, y. Sol.: Mín 3 3, ; Máx. no tiene.- Una

Más detalles

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios 1. Calcula las edades de Carolina, Miguel y Francisco, sabiendo que en total suman 54 años, la edad de Francisco es igual al doble de la de Miguel y la de Carolina es inferior en 6 años a la suma de las

Más detalles

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE . (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)

Más detalles

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex. IES de MOS Ejercicios Programación Lineal PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.com 1. Dada la región del

Más detalles

Problemas de inecuaciones Programación lineal - 2. MasMates.com Colecciones de ejercicios

Problemas de inecuaciones Programación lineal - 2. MasMates.com Colecciones de ejercicios 1. En un taller de carpintería se fabrican mesas de cocina de formica y de madera. Las de formica se venden a 210 euros y las de madera a 280 euros. La maquinaria del taller condiciona la producción, por

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios 1. Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no puede superar los 600. El precio de la entrada a una sesión de un adulto

Más detalles

EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V.

EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V. EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V. BLOQUE 1: ÁLGEBRA. JUN00 P4A: Por un helado, dos horchatas y cuatro batidos, nos cobraron en una heladería 1.700 pta un día. Otro día, por cuatro helados

Más detalles

5. Los números decimales

5. Los números decimales 40. Los números decimales 6. Representa en la recta los siguientes números a) 0, b) 1,7 c) 2,4 d) 3,2 1. NÚMEROS DECIMALES 3,2 1,7 0, 3 2 1 0 2,4 1 2 3 Escribe la fracción y calcula mentalmente el número

Más detalles

Ejercicios y problemas

Ejercicios y problemas Ejercicios problemas Problemas 28. Un granjero desea crear una granja de pollos de dos razas,a B. Dispone de 9 000 para invertir de un espacio con una capacidad limitada para 7 000 pollos. Cada pollo de

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 Problema 1. Dadas las matrices: 4 A = 1 0 1 1 B = 2 2 0 y 2 C = 1 0 2 Calcular la matriz X que verifica la ecuación AXB =2C Problema 2. Un banco

Más detalles

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel.

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 2. Alba y Ana han comprado un regalo a su madre. Indica cuánto ha

Más detalles

-Teoría y Problemas resueltos de Programación Lineal

-Teoría y Problemas resueltos de Programación Lineal -Teoría y Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables.

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B.

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B. Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA...

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... 2 2.1. NATURALEZA DE LAS RESTRICCIONES... 2 2.2. DÓNDE ESTÁ Y CÓMO SE ENCUENTRA LA SOLUCIÓN...

Más detalles

EJERCICIOS. Ejercicio 1.- (P.L.I.) Representar el conjunto de puntos que satisfacen simultáneamente las inecuaciones: x 2; x 2; y 1 (León.

EJERCICIOS. Ejercicio 1.- (P.L.I.) Representar el conjunto de puntos que satisfacen simultáneamente las inecuaciones: x 2; x 2; y 1 (León. EJERIIOS Ejercicio 1.- (P.L.I.) Representar el conjunto de puntos que satisfacen simultáneamente las inecuaciones: x 2; x 2; y 1 (León. Junio 1990) 1-2 0 2 Ejercicio 2.- (P.L.I.) escribir mediante un sistema

Más detalles

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios 1. En el mercado, Rosa ha comprado 3 kg de guisantes, 4 kg de garbanzos y 5 kg de judías por 48'80 euros. Halla, planteando y resolviendo una ecuación con una incógnita, el precio del kilo de cada tipo

Más detalles

Unidad 1 Modelos de programación lineal

Unidad 1 Modelos de programación lineal Unidad 1 Modelos de programación lineal La programación lineal comenzó a utilizarse prácticamente en 1950 para resolver problemas en los que había que optimizar el uso de recursos escasos. Fueron de los

Más detalles

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN GUÍA DE CONTENIDOS Y CASOS PRÁCTICOS Dra. Silvia Izzo Prof. Silvia Mamone 1 2 CONTENIDOS 1.- Desigualdades:

Más detalles

DP. - AS - 5119 2007 Matemáticas ISSN: 1988-379X

DP. - AS - 5119 2007 Matemáticas ISSN: 1988-379X DP. - AS - 59 7 Matemáticas ISSN: 988-379X 5 Un almacén distribuye cierto producto que fabrican 3 marcas distintas: A, B y C. La marca A lo envasa en cajas de 5 gramos y su precio es de, la marca B lo

Más detalles

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150 Ejercicios Tema 1. 1.- Utilizar el procedimiento gráfico para resolver los siguientes P.L. a) Max z = 10x 1 + 20x 2 s.a x 1 + 2x 2 15 x 1 + x 2 12 5x 1 + 3x 2 45 x 1,x 2 0 b) Max z = 2x 1 + x 2 s.a. x

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

Tema 4: Problemas Aritméticos

Tema 4: Problemas Aritméticos Tema 4: Problemas Aritméticos 4.1 Proporcionalidad simple. Vamos a en primer lugar a responder a dos preguntas: Cuándo se dice que dos magnitudes son directamente proporcionales? Se dice que son directamente

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía, de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Formulación de Modelos de Programacón Lineal 25 de julio de 2003 La (LP es una herramienta para resolver problemas de optimización

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN

EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN 1.- Ejemplo resuelto Un herrero dispone de 80 kg. de acero y 120 kg. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL.

PROBLEMAS DE PROGRAMACIÓN LINEAL. Observación: Para resolver correctamente los ejercicios, hay que responder a todos sus apartados sobre lo que se pregunta. No obstante, hay soluciones a apartados que no se han dado y que se deja al alumno

Más detalles

Colección de Problemas IV

Colección de Problemas IV 1.- Una compañía se dedica a la elaboración de 2 productos, la demanda de estos productos es de 200 unidades para cada uno de ellos. La compañía podrá elaborar los productos o comprarlos a un proveedor.

Más detalles

[email protected]!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! PROGRAMACIÓNLINEAL 1.0septiembre1995 UnaempresadeautomóvilestienedosplantasPyQdemontajedevehículosenlasqueproducetresmodelosA,ByC.Dela plantapsalensemanalmente10unidadesdelmodeloa,30delby15delc,ydelaq,20unidadesdelmodeloa,20delby70del

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 21 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 2 Programación Lineal ORGANIZACIÓN DEL TEMA Sesiones: Introducción, definición y ejemplos Propiedades y procedimientos de solución Interpretación económica

Más detalles

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios 2ª edición JUAN PALOMERO con la colaboración de CONCEPCIÓN DELGADO Economistas Catedráticos de Secundaria ---------------------------------------------------

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Problemas resueltos de Programación Lineal

Problemas resueltos de Programación Lineal Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables. Conocer

Más detalles

4 Programación lineal

4 Programación lineal 4 Programación lineal TIVIES INIILES 4.I. Resuelve las siguientes inecuaciones de primer grado. a) ( ) 4( ) b) > 6 a) 6 4 8 6 4 8 6 9, Solución:, b) > 6 6 6 > 6 6 6 6 > 6 6 6 > 6 8 > 0 > Solución:, 4.II.

Más detalles

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 Curso ON LINE "Tema 06" Tema LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 001 002 003 Una fábrica de vidrio reciclado va a producir 2 tipos de copas: unas sencillas que vende a 450 cada caja y otras talladas

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES 2º BAC

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES 2º BAC MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES 2º BAC BLOQUE I: ÁLGEBRA TEMA 1: SISTEMAS DE ECUACIONES LINEALES GUÍA 1. Qué es la solución de una ecuación lineal? Qué es la solución particular? Qué es la

Más detalles

PLAN DE TRABAJO para el VERANO

PLAN DE TRABAJO para el VERANO PLAN DE TRABAJO para el VERANO MATEMÁTICAS 4 º ESO OPCIÓN A PENDIENTES IES JOVELLANOS Nombre: Esta colección de ejercicios ha sido diseñada con el objetivo de ayudar a preparar a aquellos alumnos y alumnas

Más detalles

Inventarios. Concepto de Inventario

Inventarios. Concepto de Inventario Inventarios El inventario tiene como propósito fundamental proveer a la empresa de materiales necesarios, para su continuo y regular desenvolvimiento, es decir, el inventario tiene un papel vital para

Más detalles

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es Matemáticas Aplicadas a las Ciencias Sociales II. 2º Bachillerato. Capítulo 4: Programación lineal Autores: Leticia González Pascual y Álvaro Valdés Menéndez 101 Índice 1. INECUACIONES LINEALES CON DOS

Más detalles

PROBLEMAS. 3. Mi abuela había guardado 120 monedas de una peseta. Cuánto le falta para tener 30 duros?.

PROBLEMAS. 3. Mi abuela había guardado 120 monedas de una peseta. Cuánto le falta para tener 30 duros?. NOMBRE:... NIVEL:... FECHA:... 1. De La Laguna a Los Cristianos hay 82 Km. Una guagua que sale de La Laguna a las 10 horas y llega a Los Cristianos a las 12 horas, qué velocidad ha desarrollado? 2. Tres

Más detalles

Ejercicios resueltos de Programación Lineal

Ejercicios resueltos de Programación Lineal Investigación Operativa I 009 Ejercicios resueltos de Programación Lineal Mauricio estrella Erika Beatriz Palacin Palacios Pajuelo Daniel PREGUNTA Ingeniería de Sistemas y Computación UNDAC 3..6 la empresa

Más detalles

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO 1) Calcular tres números consecutivos cuya suma sea 1. ) Las edades de dos hermanos suman 49 años. Calcularlas sabiendo que la edad de uno es superior en años a la del otro. ) Descomponer el número 171

Más detalles

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL Orientaciones para la PRUEBA DE ACCESO A LA UNIVERSIDAD en relación con este tema: Inecuaciones lineales con una o dos

Más detalles

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA.

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. 001 002 003 004 005 006 007 008 009 010 011 012 Una tienda posee 3 tipos de conservas, A, B y C. El precio

Más detalles

EJERCICIOS DE REPASO 2º ESO

EJERCICIOS DE REPASO 2º ESO NOMBRE: CURSO: 0-0 EJERCICIOS DE REPASO º ESO.- Calcula, poniendo los pasos que haces, no sólo el resultado: a ) - ( - ) + 8 ( - ) = b) ( - 8 ) [ 7 + ( - 9 ) ] = c) 7 ( 8 ) + : ( - + 7 ) = d) 6 : ( 8 )

Más detalles

Ejercicios de Matemáticas

Ejercicios de Matemáticas Ejercicios de Matemáticas 82. Me encargaron un trabajo. Ayer realicé la mitad del mismo y hoy 1/3 del total. Qué fracción del trabajo llevo realizada? 83. De un depósito que contiene 240 litros de agua

Más detalles

EJERCICIO EXTRAS FCA 6 E TURNO NOCTURNO SENSEY

EJERCICIO EXTRAS FCA 6 E TURNO NOCTURNO SENSEY PROGRAMACIÓN LINEAL? LA PROGRAMACIÓN LINEAL SE APLICA A MODELOS DE OPTIMIZACIÓN EN LOS QUE LAS FUNCIONES OBJETIVO Y RESTRICCIONES SON ESTRICTAMENTE LINEALES. -VARIABLES Y PARÁMETROS. SON INCÓGNITAS QUE

Más detalles

Problemas de optimización

Problemas de optimización Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q(x) en Kg) depende de la temperatura x (ºC) según la expresión. a) Calcula razonadamente cuál es la temperatura óptima

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Programación lineal. 2.1 Problemas PAU

Programación lineal. 2.1 Problemas PAU 1 Programación lineal 2.1 Problemas PAU Junio 94: Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de ptas. y el modelo B a 2

Más detalles

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales PROGRAMACIÓN LINEAL Índice: 1. Origen de la programación lineal------------------------------------------------------------- 1 2. Inecuaciones lineales. Interpretación geométrica -----------------------------------------

Más detalles

1.vejiga y tumor 2. recto, cóccix, etc 3. fémur, parte de la pelvis,etc.

1.vejiga y tumor 2. recto, cóccix, etc 3. fémur, parte de la pelvis,etc. 1. PLANTEAR como un problema de P.L.: Acaban de diagnosticar que MARY, una perrita de compañía muy querida para sus dueños, tiene cáncer en una etapa bastante avanzada. Específicamente, tiene un tumor

Más detalles

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal SISTEMAS DE ECUACIONES DE ENUNCIADO VERBAL CON 3 INCÓGNITAS. RESUELTOS EN ABIERTO PAU Universidad de Oviedo Junio 996 005. En una confitería

Más detalles

Economía de la producción de leche en Cajamarca, Perú, con énfasis particular en los pequeños productores

Economía de la producción de leche en Cajamarca, Perú, con énfasis particular en los pequeños productores Economía de la producción de leche en Cajamarca, Perú, con énfasis particular en los pequeños productores Otto Garcia y Carlos A. Gomez RESUMEN EJECUTIVO Introducción El principal objetivo de este estudio

Más detalles
Sitemap