SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% pts 2000 pts


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SOLUCIONES. Variables: Función objetivo: F(x,y) = 500x + 2000y. Resumen de datos. A B Jazmín 15% 30% 60 Alcohol 20% 15% 50 500 pts 2000 pts"

Transcripción

1 SOLUCIONES 27. (Puntuación máxima: 3 Puntos) Una empresa fabrica dos tipos de colonia: A y B. La 1ª contiene un 15% de extracto de jazmín, un 20% de alcohol y el resto es agua, y la 2ª lleva un 30% de extracto de jazmín, un 15% de alcohol y el resto de agua. Diariamente se dispone de 60 litros de extracto de jazmín y 50 litros de alcohol. Cada día se pueden producir como máximo 150 litros de la colonia B. El precio de venta por litro de la colonia A es 500 ptas. y el de la B ptas. Hallar los litros de cada tipo que deben producirse diariamente para que el beneficio sea máximo. Solución. Variables: litros colonia tipo A y litros colonia tipo B Función objetivo: F(x,y) = 500x y Resumen de datos Restricciones: A B Jazmín 15% 30% 60 Alcohol 20% 15% pts 2000 pts Jazmín: x + y 60 ; 15x+30y 6000 ; x + 2y Alcohol: x + y 50 ; 20x + 15y 5000 ; 4x + 3y y 150 x 0 y 0 Región factible: Límites de la región factible: B: (0, 150) y = , x + 2y = y = , 4x + 3y = '5, 0 C: ( ) D: ( ) E: ( )

2 Optimación: x y Z=f(x,y)= A B C D El Beneficio máximo se obtiene con 100 unidades tipo A y 200 unidades tipo B, siendo este de pts. 32. (Puntuación máxima: 3 Puntos) Una empresa de automóviles tiene dos plantas P y Q de montaje de vehículos en las que produce tres modelos A, B y C. De la planta P salen semanalmente 10 unidades del modelo A, 30 del B y 15 del C y de la Q, 20 unidades del modelo A, 20 del B y 70 del C., cada semana. La firma necesita, al menos 800 unidades de A, 1600 de B y 1800 de C. Si el gasto de mantenimiento de cada planta es de 6 millones de pesetas semanales, Cuántas semanas ha de funcionar cada planta para que el coste de producción sea mínimo? Solución x nº de semanas de trabajo en la planta P y nº de semanas de trabajo en la planta Q F(x,y) =6x +6y (expresada en millones de pesetas) Modelo A Modelo B Modelo B P Q Modelo A :10x + 20y 800 Modelo B :30x + 20y 1600 Restricciones: Modelo C :15x + 70y 1800 x 0 ; y 0 Vértices de la región factible x = 0 A : A = 30x + 20y = x + 20y = 1600 B : B = 10x + 20y = x + 20y = 800 C : C = 15x + 70y = x + 70y = 1800 D : C = y = 0 ( 0,80) ( 40,20) ( 50,15) ( 120,0)

3 Optimación: Mínimo x y F(x,y) =6x +6y A B C D El mínimo coste de producción cumpliendo todas las restricciones se obtiene trabajando 40 semanas en la planta P y 20 días en la planta Q, siendo este coste de 360 millones. 33. (Puntuación máxima: 3 Puntos) Una industria vinícola produce vino y vinagre. El doble de la producción de vino es siempre menor o igual que la producción de vinagre más cuatro unidades. Por otra parte, el triple de la producción de vinagre sumado con 4 veces la producción de vino se mantiene siempre menor o igual a 18 unidades. Halla el número de unidades de cada producto que se deben producir para alcanzar un beneficio máximo, sabiendo que cada unidad de vino deja un beneficio de 800 pta. y cada unidad de vinagre 200 pta. Solución. x Unidades de vino y Unidades de vinagre La función objetivo debe expresar el beneficio en función de la unidades de vino y vinagre se vendan: F(x, y) =800x +200y 2x y + 4 4x + 3y 18 Restricciones: x 0 y 0 Vértices de la región factible: Optimación. (Máximo de F) A : B : C : 4x + 3y = 18 A = x = 0 4x + 3y = 18 B = 3,2 2x = y + 4 2x = y + 4 C = ( 2,0) y = 0 ( 0,6) x y F(x, y) A B C Se obtiene un beneficio máximo de 2800 pts sometido alas restricciones del sistema vendiendo 3 unidades de vino y 2 de vinagre. 34. (Puntuación máxima: 3 puntos) Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y sillas que vende a 2000 pesetas y 3000 pesetas por unidad, ( )

4 respectivamente. Desea saber cuántas unidades de cada artículo debe fabricar diariamente un operario para maximizar los ingresos, teniéndose las siguientes restricciones: El número total de unidades de los dos tipos no podrá exceder de 4 por día y operario. Cada mesa requiere 2 horas para su fabricación; cada silla, 3 horas. La jornada laboral máxima es de 10 horas. El material utilizado en cada mesa cuesta 400 pts. El utilizado en cada silla cuesta 200 pts. Cada operario dispone de ptas diarias para material. Solución: Variables: x nº de mesas y nº de sillas Función objetivo: F (x, y) = 2000x y + y 4 2x + 3y 10 Restricciones: 400x + 200y 1200 x 0; y 0 Región factible: Vértices de la región factible: 2x + 3y = 10 3 A: : sol. 0, x = x + 3y = 10 B: : sol. ( 2,2) x + y = 4 y = 0 : sol. 3,0 400x + 200y = 1200 Optimación: C: ( ) x y z=f(x,y)=2000x+3000y! A 0 3' B C

5 El beneficio se obtiene produciendo 2 mesas y dos sillas. 35. (Puntuación 3 puntos) Una agencia de viajes vende paquetes turísticos para acudir a la final de un campeonato de fútbol. La agencia está considerando ofrecer dos tipos de viajes: El 1º de ellos (A) incluye desplazamiento en autocar para dos personas, una noche de alojamiento en habitación doble y cuatro comidas. El 2º (B) incluye desplazamiento en autocar para una persona, una noche de alojamiento en habitación también doble y dos comidas. El precio de venta del paquete A es de ptas. y el del paquete B es de ptas. La agencia tiene contratadas un máximo de 30 plazas de autobús, 20 habitaciones dobles y 56 comidas. El número de paquetes del tipo B no debe superar al de los de tipo A. La empresa desea maximizar sus ingresos. Se pide: a) Expresar la función del objeto. b) Escribir mediante inecuaciones las restricciones del problema y representar gráficamente el recinto definido. c) Determinar cuantos paquetes de cada tipo debe vender la agencia para maximizar sus ingresos. Calcular dichos ingresos. SOLUCIÓN: PLAZAS PLAZAS DE NÚMERO DE AUTOCAR ALOJAMIENTO COMIDAS TIPO A TIPO B a) Función objetivo: F(x,y)=15.000x y x + y 30 x + y 20 b) Restricciones: 4x + 2y 56 x 0 : y 0 Región factible Vértices de la región factible + y = 20 : A 0,20 x = 0 x + y = 20 : B 8,12 4x + 2y = 56 4x + 2y = 56 : C 14,0 y = 0 A: ( ) B: ( ) C: ( )

6 Optimación x y F(x,y)=15.000x y A B C El ingreso máximo es de pts., y se obtiene vendiendo 8 paquetes tipo A y 12 paquetes tipo B.

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B.

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B. Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID)

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) 1.- (Junio 99). Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

PPL PARA RESOLVER CON SOLVE

PPL PARA RESOLVER CON SOLVE PPL PARA RESOLVER CON SOLVE 1. Una compañía posee dos minas: la mina A produce cada día 1 tonelada de hierro de alta calidad, 3 toneladas de calidad media y 5 de baja calidad. La mina B produce cada día

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 Problema 1. Dadas las matrices: 4 A = 1 0 1 1 B = 2 2 0 y 2 C = 1 0 2 Calcular la matriz X que verifica la ecuación AXB =2C Problema 2. Un banco

Más detalles

Tema 1. - SISTEMAS DE ECUACIONES.

Tema 1. - SISTEMAS DE ECUACIONES. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad - Tema. - SISTEMAS DE ECUACIONES. Ejercicio. ( ) a) ( puntos) Determine dos números sabiendo que al dividir el mayor por el menor obtenemos 7

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

02 Ejercicios de Selectividad Programación Lineal

02 Ejercicios de Selectividad Programación Lineal Ejercicios propuestos en 009 1.- [009-1-B-1] En un examen se propone el siguiente problema: F x, y = 6x+ 3y en la región Indique dónde se alcanza el mínimo de la función determinada por las restricciones

Más detalles

Propuesta A. 2 0 b) Dada la ecuación matricial: X =, despeja y calcula la matriz X (0.75 ptos) 1 1

Propuesta A. 2 0 b) Dada la ecuación matricial: X =, despeja y calcula la matriz X (0.75 ptos) 1 1 Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (014) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

Matemáticas aplicadas a las ciencias sociales II PL

Matemáticas aplicadas a las ciencias sociales II PL Matemáticas aplicadas a las ciencias sociales II PL 1) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss.

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss. Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ÁLGEBRA Junio 1994. Un aficionado a la Bolsa invirtió.000.000 de pesetas en acciones de tres empresas A, B

Más detalles

EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V.

EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V. EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V. BLOQUE 1: ÁLGEBRA. JUN00 P4A: Por un helado, dos horchatas y cuatro batidos, nos cobraron en una heladería 1.700 pta un día. Otro día, por cuatro helados

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150 Ejercicios Tema 1. 1.- Utilizar el procedimiento gráfico para resolver los siguientes P.L. a) Max z = 10x 1 + 20x 2 s.a x 1 + 2x 2 15 x 1 + x 2 12 5x 1 + 3x 2 45 x 1,x 2 0 b) Max z = 2x 1 + x 2 s.a. x

Más detalles

El Régimen Especial del IVA en el

El Régimen Especial del IVA en el ISSN 1696-7208 Revista número 17 de Marzo de 2005 Volumen 2 El Régimen Especial del IVA en el Ciclo Formativo de Grado Superior de Agencias de Viajes. Mª Lourdes Aznar Paracuellos El IVA en las agencias

Más detalles

2 Matrices. 1. Tipos de matrices. Piensa y calcula. Aplica la teoría

2 Matrices. 1. Tipos de matrices. Piensa y calcula. Aplica la teoría 2 Matrices 1. Tipos de matrices Piensa y calcula Escribe en forma de tabla el siguiente enunciado: «Una familia gasta en enero 400 en comida y 150 en vestir; en febrero, 500 en comida y 100 en vestir;

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = =

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = = Matemáticas EDUCACIÓN SECUNDARIA Opción A SOLUCIONES Evaluación: Fecha: Ejercicio nº 1.- a) Opera y simplifica: 1 1 1, 4, + : 5 b) Reduce a una sola potencia: 4 1 5 5 0 a) Expresamos N =, en forma de fracción:

Más detalles

José Jaime Mas Bonmatí E-Mail: [email protected] IES LA ASUNCIÓN http://www.ieslaasuncion.org

José Jaime Mas Bonmatí E-Mail: josejaime@ieslaasuncion.org IES LA ASUNCIÓN http://www.ieslaasuncion.org 1. (PAU junio 2003 A1). Dada la siguiente ecuación matricial: 3 2 x 10 x 2 1 y 6 y 0 1 z 3 obtener de forma razonada los valores de x, y, z. 2. (PAU junio 2003 A2). Una compañía fabrica y vende dos modelos

Más detalles

6 PROGRAMACIÓN LINEAL

6 PROGRAMACIÓN LINEAL 6 PROGRAMACIÓN LINEAL Introducción El tema comienza con una introducción a la programación lineal, en la que se exponen todos los conceptos necesarios como región factible, función objetivo, vector director

Más detalles

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E CURSO 010-011 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel.

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 2. Alba y Ana han comprado un regalo a su madre. Indica cuánto ha

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía, de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL.

PROBLEMAS DE PROGRAMACIÓN LINEAL. Observación: Para resolver correctamente los ejercicios, hay que responder a todos sus apartados sobre lo que se pregunta. No obstante, hay soluciones a apartados que no se han dado y que se deja al alumno

Más detalles

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1.

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1. IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio. ( puntos) Se desea invertir una cantidad de dinero menor o igual que 000 euros,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD ANEXO PRUEBAS DE ACCESO A LA UNIVERSIDAD Em este bloque hemos creído conveniente añadir las PAU (Pruebas de acceso a la Universidad) propuestas en la Comunidad Valenciana para el Bchillerato de Ciencias

Más detalles

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución: Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones

Más detalles

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios

FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios 2ª edición JUAN PALOMERO con la colaboración de CONCEPCIÓN DELGADO Economistas Catedráticos de Secundaria ---------------------------------------------------

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS/AS CON LAS MATEMÁTICAS DE 3º ESO PENDIENTES PRIMER PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS/AS CON LAS MATEMÁTICAS DE 3º ESO PENDIENTES PRIMER PARCIAL de º de E.S.O. EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS/AS CON LAS MATEMÁTICAS DE º ESO PENDIENTES PRIMER PARCIAL Fecha tope para entregarlos de enero de 0 Examen de enero de 0 I.E.S. SERPIS DEPARTAMENTO

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Álgebra 1. Sistemas lineales 2. Matrices 3. Determinantes 4. Sistemas lineales con parámetros 1 Sistemas lineales 1. Sistemas de ecuaciones lineales Piensa y calcula

Más detalles

Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA

Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA Contenido Orientativo Matemáticas 11 EE-EA-EC, Libre Escolaridad FACES-ULA El siguiente documento tiene como objetivo proporcionar a los alumnos del curso de matemáticas 11, por la modalidad de libre escolaridad,

Más detalles

PROGRAMACIÓN LINEAL. Página 102. Página 103

PROGRAMACIÓN LINEAL. Página 102. Página 103 4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior

Más detalles

EJERCICIOS. Ejercicio 1.- (P.L.I.) Representar el conjunto de puntos que satisfacen simultáneamente las inecuaciones: x 2; x 2; y 1 (León.

EJERCICIOS. Ejercicio 1.- (P.L.I.) Representar el conjunto de puntos que satisfacen simultáneamente las inecuaciones: x 2; x 2; y 1 (León. EJERIIOS Ejercicio 1.- (P.L.I.) Representar el conjunto de puntos que satisfacen simultáneamente las inecuaciones: x 2; x 2; y 1 (León. Junio 1990) 1-2 0 2 Ejercicio 2.- (P.L.I.) escribir mediante un sistema

Más detalles

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

Programación Lineal ALGEBRA. Curso:3 E.M. Unidad: Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Inecuaciones en 2 variables Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes:

Más detalles

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs.

Más detalles

-Teoría y Problemas resueltos de Programación Lineal

-Teoría y Problemas resueltos de Programación Lineal -Teoría y Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables.

Más detalles

PRECAUCIÓN: ERIZOS SUELTOS!

PRECAUCIÓN: ERIZOS SUELTOS! Evaluación por s. º E.S.O. Curso 010 011 PRECAUCIÓN: ERIZOS SUELTOS! Un erizo quiere atravesar una carretera de anchura AB. El erizo ve una farola al otro lado de la carretera desde el punto B, con un

Más detalles

HOJA 5 SUCESIONES Y PROGRESIONES

HOJA 5 SUCESIONES Y PROGRESIONES HOJA 5 SUCESIONES Y PROGRESIONES Sucesión: Término general 1.- Calcula el término general de las sucesiones: a) -1, 2, 5, 8, 11, b) 3, 3/2, ¾, 3/8, c) 1, 4, 9, 16, 25, 2.- Halla el término general de cada

Más detalles

b) Debe vender 20 coches de tipo A y 10 coches de tipo B El importe es de 50 millones de pesetas.

b) Debe vender 20 coches de tipo A y 10 coches de tipo B El importe es de 50 millones de pesetas. Junio 94 a) Puede fabricar: 12/7 de modelo a y 12/7 del modelo B 10 del modelo A y 10 del B 20 del modelo A y 10 del B 20 del modelo A y 0 del B 4 del modelo A y 0 del B b) Debe vender 20 coches de tipo

Más detalles

20 X =, despeja y calcula la matriz X. b) Dada la ecuación matricial:

20 X =, despeja y calcula la matriz X. b) Dada la ecuación matricial: MasMatescom 1 [2014] [EXT-A] a) Despeja la matriz X en la siguiente ecuación matricial: I 3-2 X + X A = B, suponiendo que todas las matrices son cuadradas del mismo orden (I es la matriz identidad) b)

Más detalles

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II. Examen final. 18 de mayo de 2012. Nombre y apellidos:... Propuesta A

Matemáticas aplicadas a las Ciencias Sociales II. Examen final. 18 de mayo de 2012. Nombre y apellidos:... Propuesta A Matemáticas aplicadas a las Ciencias Sociales II. Examen final. 18 de mayo de 2012 Nombre y apellidos:... Propuesta A 1. Dada la ecuación matricial. a) Resuelve la ecuación. (0,75 puntos) 1 b) Si 0 1 y

Más detalles

Operaciones combinadas

Operaciones combinadas Operaciones combinadas ESCRITURA SIMPLIFICADA DE SUMAS Y RESTAS Para simplificar la escritura de una serie de sumas y restas de números enteros, por ejemplo (+5) + (-) - (-8) - (+7), se siguen estos pasos:.

Más detalles

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO 1) Calcular tres números consecutivos cuya suma sea 1. ) Las edades de dos hermanos suman 49 años. Calcularlas sabiendo que la edad de uno es superior en años a la del otro. ) Descomponer el número 171

Más detalles

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 Curso ON LINE "Tema 06" Tema LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 001 002 003 Una fábrica de vidrio reciclado va a producir 2 tipos de copas: unas sencillas que vende a 450 cada caja y otras talladas

Más detalles

LAS FRACCIONES. Si queremos calcular la fracción de un número dividimos el número por el denominador y el resultado lo multiplicamos por el numerador.

LAS FRACCIONES. Si queremos calcular la fracción de un número dividimos el número por el denominador y el resultado lo multiplicamos por el numerador. LAS FRACCIONES LAS FRACCIONES Y SUS TÉRMINOS Los términos de una fracción se llaman numerador y denominador. El denominador indica el número de partes iguales en que se divide la unidad. El numerador indica

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

EJERCICIOS METODO SIMPLEX

EJERCICIOS METODO SIMPLEX EJERCICIOS METODO SIMPLEX 1. Un empresario pretende fabricar dos tipos de congeladores denominados A y B. Cada uno de ellos debe pasar por tres operaciones antes de su comercialización: Ensamblaje, pintado

Más detalles

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS SEGUNDO CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA Curso 01/01 DEPARTAMENTO DE MATEMÁTICAS NOMBRE GRUPO TEMA 1 : LOS NÚMEROS

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 21 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

3º ESO. matemáticas IES Montevil tema 9: lenguaje algebraico, ecuaciones y sistemas curso 2010/2011

3º ESO. matemáticas IES Montevil tema 9: lenguaje algebraico, ecuaciones y sistemas curso 2010/2011 1. Escribe utilizando el lenguaje algebraico las siguientes afirmaciones El doble de un La mitad de un La décima parte de un Un más su cuarta parte El triple de un más el doble de otro La quinta parte

Más detalles

[email protected]!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! PROGRAMACIÓNLINEAL 1.0septiembre1995 UnaempresadeautomóvilestienedosplantasPyQdemontajedevehículosenlasqueproducetresmodelosA,ByC.Dela plantapsalensemanalmente10unidadesdelmodeloa,30delby15delc,ydelaq,20unidadesdelmodeloa,20delby70del

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR. septiembre de 1999. Parte General Apartado B

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR. septiembre de 1999. Parte General Apartado B septiembre de 1999 Parte General Apartado B Duración: 1 hora 30 minutos 1.- Un alumno ha obtenido 7,1 y 8,3 en las dos primeras evaluaciones de matemáticas. Qué nota debe sacar en la tercera evaluación

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE . (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)

Más detalles

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas: Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z

Más detalles

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO EXAMEN COMPLETO INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones: A y B. El alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que

Más detalles

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL. 1. (JUN 02) Un proyecto de asfaltado puede llevarse a cabo por dos grupos diferentes de una misma empresa: G1 y G2. Se trata de asfaltar tres zonas: A, B y

Más detalles

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL Orientaciones para la PRUEBA DE ACCESO A LA UNIVERSIDAD en relación con este tema: Inecuaciones lineales con una o dos

Más detalles

Ejercicios de Matemáticas

Ejercicios de Matemáticas Ejercicios de Matemáticas 82. Me encargaron un trabajo. Ayer realicé la mitad del mismo y hoy 1/3 del total. Qué fracción del trabajo llevo realizada? 83. De un depósito que contiene 240 litros de agua

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

Problemas de Investigación Operativa y Programación Matemática

Problemas de Investigación Operativa y Programación Matemática Problemas de Investigación Operativa y Programación Matemática Omar J. Casas López Septiembre 2002 Tema I : Introducción 1. Una factoría fabrica dos tipos de productos, A y B. Para su elaboración se requieren

Más detalles

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA...

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... 2 2.1. NATURALEZA DE LAS RESTRICCIONES... 2 2.2. DÓNDE ESTÁ Y CÓMO SE ENCUENTRA LA SOLUCIÓN...

Más detalles

CONCEPTOS PREVIOS TEMA 2

CONCEPTOS PREVIOS TEMA 2 1.PROPORCIONALIDAD 1.1 REPARTOS PROPORCIONALES CONCEPTOS PREVIOS TEMA 2 Cuando queremos repartir una cantidad entre varias personas, siempre dividimos el total por el número de personas que forman parte

Más detalles

a)1 punto. b) Vértices (0,0),(0,2)(1.5,0.5)(1,0). 0.25 puntos

a)1 punto. b) Vértices (0,0),(0,2)(1.5,0.5)(1,0). 0.25 puntos c Solución óptima (1.5,0.5 Valor 3.5. 0.5 puntos. Para recaudar dinero para el viaje de fin de curso, unos estudiantes han vendido camisetas, bufandas y gorras a 10, 5 y 7 euros respectivamente. Han recaudado

Más detalles

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios 1. En el mercado, Rosa ha comprado 3 kg de guisantes, 4 kg de garbanzos y 5 kg de judías por 48'80 euros. Halla, planteando y resolviendo una ecuación con una incógnita, el precio del kilo de cada tipo

Más detalles

1. ( SEPTIEMBRE 2010 / OPCIÓN A / EJERCICIO 1 )(Puntuación máxima: 3 puntos)

1. ( SEPTIEMBRE 2010 / OPCIÓN A / EJERCICIO 1 )(Puntuación máxima: 3 puntos) EJERCICIOS DE SELECTIVIDAD / COMUNIDAD DE MADRID MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II UNIDAD: PROGRAMACIÓN LINEAL 1. ( SEPTIEMBRE 2010 / OPCIÓN A / EJERCICIO 1 )(Puntuación máxima:

Más detalles

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal SISTEMAS DE ECUACIONES DE ENUNCIADO VERBAL CON 3 INCÓGNITAS. RESUELTOS EN ABIERTO PAU Universidad de Oviedo Junio 996 005. En una confitería

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10. _ 9-.qxd //7 9:7 Página 9 Divisibilidad INTRODUCCIÓN El concepto de divisibilidad requiere dominar la multiplicación, división y potenciación de números naturales. Es fundamental dedicar el tiempo necesario

Más detalles

CONCEPTOS BÁSICOS DE PROGRAMACIÓN LINEAL.-

CONCEPTOS BÁSICOS DE PROGRAMACIÓN LINEAL.- PROGRAMACIÓN LINEAL CONCEPTOS BÁSICOS DE PROGRAMACIÓN LINEAL.- 1. Definición. Técnica de programación matemática para resolver problemas de optimización de recursos (maximización, minimización) cuando

Más detalles

Ejercicios 2º ESO PROBLEMAS( ecuaciones de primer grado) CURSO 2008/2009. Problemas 1 incógnita

Ejercicios 2º ESO PROBLEMAS( ecuaciones de primer grado) CURSO 2008/2009. Problemas 1 incógnita Ejercicios 2º ESO PROBLEMAS( ecuaciones de primer grado) CURSO 2008/2009 Problemas 1 incógnita 2º E.S.O Sobre números Quién miente? El famoso detective Roberto J. Pescador recibió una tarde la visita de

Más detalles

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN GUÍA DE CONTENIDOS Y CASOS PRÁCTICOS Dra. Silvia Izzo Prof. Silvia Mamone 1 2 CONTENIDOS 1.- Desigualdades:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES Junio, Ejercicio 1, Opción B 3 Sean las matrices A 0 3, B y C 0 1 1 5 1 3 0 a) Calcule las

Más detalles

PROBLEMAS ECUACIONES 1er GRADO

PROBLEMAS ECUACIONES 1er GRADO PROBLEMAS ECUACIONES 1er GRADO 1.- Dos amigos juntan el dinero que tienen, uno tiene el doble que el otro. Se gastan 20, y les quedan 13 Cuánto dinero tiene cada uno? 2.- He comprado 8 cuadernos y he pagado

Más detalles

Curso ON LINE Tema 5 MATRICES LITERALES

Curso ON LINE Tema 5 MATRICES LITERALES urso ON LINE Tema 5 1 2 3 4 5 MATRIES LITERALES Una fábrica de automóviles dispone en el mes de junio de tres modelos: económico, de lujo y deportivo. En determinada ciudad la firma posee tres concesionarios,

Más detalles

de 75 cm. Cuando la primera ha dado 300 vueltas, cuántas vueltas habrá dado la segunda?

de 75 cm. Cuando la primera ha dado 300 vueltas, cuántas vueltas habrá dado la segunda? 1. Seis personas pueden vivir en un hotel durante 12 días por 792. Cuánto costará el hotel a 15 personas durante ocho días? 6 personas 12 días 792 15 personas 8 días x A más personas más precio. Directa.

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

MA4011: Modelación y Optimización EjemplosProfr. Eduardo Uresti, Agosto-Diciembre 2010

MA4011: Modelación y Optimización EjemplosProfr. Eduardo Uresti, Agosto-Diciembre 2010 MA4011: Modelación y Optimización EjemplosProfr. Eduardo Uresti, Agosto-Diciembre 2010 1. Un fabricante produce semanalmente un solo artículo para dos clientes. Este artículo es un insumo para ambos clientes

Más detalles

PRAGA REPUBLICA CHECA. Del 17 al 21 de Febrero 2.016 VIAJE DE FIN DE CURSO 2015-2016. Colegio Gamarra

PRAGA REPUBLICA CHECA. Del 17 al 21 de Febrero 2.016 VIAJE DE FIN DE CURSO 2015-2016. Colegio Gamarra PRAGA REPUBLICA CHECA Del 17 al 21 de Febrero 2.016 VIAJE DE FIN DE CURSO 2015-2016 Colegio Gamarra QUIÉNES SOMOS? GLOBALIA El viaje de tu vida Globalia es el primer grupo turístico español con más de

Más detalles

PRUEBAS DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES (CDI)

PRUEBAS DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES (CDI) Portal Fuenterrebollo Pruebas de Conocimientos y Destrezas Indispensables (CDI) PRUEBAS DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES (CDI) 1. Andrea abre un libro y observa que la suma de los números de

Más detalles

Ejercicios orientadores - Concurso BECAS - UCU Página 1 de 5

Ejercicios orientadores - Concurso BECAS - UCU Página 1 de 5 Concurso BECAS 2016 Ejercicios orientadores 1) En la ciudad de Odnap los ómnibus urbanos cumplen sus horarios con rigurosidad y tienen una frecuencia constante a lo largo del día. El ciudadano Imel concurre

Más detalles

Carmen Puerta Juan Antonio Rivas. www.argitalpenak.ehu.es ARGITALPEN ZERBITZUA SERVICIO EDITORIAL ISBN: 978-84-9860-439-9

Carmen Puerta Juan Antonio Rivas. www.argitalpenak.ehu.es ARGITALPEN ZERBITZUA SERVICIO EDITORIAL ISBN: 978-84-9860-439-9 Exámenes resueltos de Matemáticas para Economistas IV economistas Carmen Puerta Juan Antonio Rivas ARGITALPEN ZERBITZUA SERVICIO EDITORIAL www.argitalpenak.ehu.es ISBN: 978-84-9860-439-9 Exámenes resueltos

Más detalles

MAT. APLICADAS A LAS CIENCIAS SOCIALES II - P.A.E.U. ÁLGEBRA LINEAL

MAT. APLICADAS A LAS CIENCIAS SOCIALES II - P.A.E.U. ÁLGEBRA LINEAL MAT. APLICADAS A LAS CIENCIAS SOCIALES II - P.A.E.U. ÁLGEBRA LINEAL. - Maximizar y minimizar la función T(x,y)= -x+y, sujeta a las restricciones: y x 4, y+x 4, x, y. Sol.: Mín 3 3, ; Máx. no tiene.- Una

Más detalles

Guía de Ejercicios. Teoría de Juegos

Guía de Ejercicios. Teoría de Juegos Guía de Ejercicios Teoría de Juegos Soledad Cabrera Calabacero 2012 La autora es Licenciada en Ciencias en dministración de Empresas e Ingeniero Comercial de la Pontificia Universidad Católica de Valparaíso,

Más detalles
Sitemap